回RTscan

OCR-B \& Barcode Scanner: RT234-OCR

User Guide

Chapter1 Description 5
Introduction 6
RT234-OCR Scanner. 6
Data Port Pinout 5
Dimensions (unit: mm) 6
IR Triggering Range 7
Optics. 8
Connecting the RT234-OCR to a Host Device 9
Scanning Instructions 12
Maintenance 12
Chapter 2 System Settings 13
Introduction. 13
Programming Barcode/ Programming Command/Function 15
Use of Programming Command 16
Use of Programming Barcodes 18
Illumination 19
Aiming 20
Good Read LED 20
Power On Beep 22
Good Read Beep 22
Scan Mode 26
Decode Session Timeout 27
Image Stabilization Timeout (Sense Mode) 28
Timeout between Decodes (Same Barcode) 29
Sensitivity (Sense Mode) 30
Trigger Commands. 31
Scanning Preference 33
Decode Area 33
Image Flipping 36
Bad Read Message 37
Default Settings 38
Query Product Information 39
Chapter 3 RS-232 Interface 40
Introduction 40
Baud Rate 41
Parity Check 42
Data Bit 43
Stop Bit 43
Hardware Auto Flow Control 44
Chapter 4 USB Interface 45
Introduction 45
USB HID Keyboard. 46
USB Virtual Com 65
HID POS (POS HID Barcode Scanner) 66
IBM SurePOS (Tabletop) 68
IBM SurePOS (Handheld) 68
Chapter 5 Symbologies 69
Introduction. 69
Global Settings 69
Code 128 72
EAN-8 74
EAN-13 78
UPC-E 81
UPC-A 85
Coupon. 89
Interleaved 2 of 5 91
ITF-14 94
ITF-6 95
Matrix 2 of 5 96
Code 39 99
Codabar 105
Code 93 109
China Post 25 112
GS1-128 (UCC/EAN-128) 115
GS1 Databar (RSS) 117
GS1 Composite (EAN•UCC Composite) 118
Code 11 119
ISBN 123
ISSN 125
Industrial 25 126
Standard 25 129
Plessey 132
MSI-Plessey 135
AIM 128 139
ISBT 128. 141
Code 49 142
Code 16K 144
PDF417 146
Micro PDF417 151
QR Code 153
Micro QR Code 158
Aztec 160
Data Matrix 165
Maxicode 170
Chinese Sensible Code. 172
GM Code 176
Code One 178
USPS Postnet 180
USPS Intelligent Mail 181
Royal Mail 183
USPS Planet 184
KIX Post 185
Australian Postal 186
Specific OCR-B 187
Passport OCR 188
Chapter 6 Data Formatter 189
Introduction 189
Add a Data Format. 189
Enable/Disable Data Formatter 193
Non-Match Error Beep 194
Multiple Data Formats 195
Data Format Selection 196
Change Data Format for a Single Scan 197
Clear Data Format 198
Query Data Formats 198
Formatter Command Type 6 199
Chapter 7 Prefix \& Suffix 213
Introduction 213
Global Settings 214
Prefix Sequence 214
Custom Prefix. 215
AIM ID Prefix 216
Code ID Prefix 217
Custom Suffix 226
Data Packing 227
Terminating Character Suffix 229
Chapter 8 Batch Programming 231
Introduction 231
Create a Batch Command 232
Create a Batch Barcode 232
Use Batch Barcode 233
Appendix 234
Digit Barcodes 234
Save/Cancel Barcodes 237
Factory Defaults Table 238
AIM ID Table 246
Code ID Table 248
Symbology ID Number 250
ASCII Table 252
Unicode Key Maps 256

Chapter 1 Description

This manual provides detailed instructions for setting up and using the RT234-OCR fixed mount barcode scanner (hereinafter referred to as "the RT234-OCR" or "the scanner").

Chapter 1, Getting Started	Gives a general description of the RT234-OCR.
Chapter 2, System Settings	Introduces three configuration methods and describes how to configure general parameters of the RT234-OCR.
Chapter 3, RS-232 Interface	Describes how to configure RS-232 communication parameters.
Chapter 4, USB Interface	Describes how to configure USB communication parameters.
Chapter 5, Symbologies	Lists all compatible symbologies and describes how to configure the relevant parameters.
Chapter 6, Data Formatter	Explains how to customize scanned data with the advanced data formatter.
Chapter 7, Prefix \& Suffix	Describes how to use prefix and suffix to customize scanned data.
Chapter 8, Batch Programming	Explains how to integrate a complex programming task into a single barcode.
Appendix	Provides factory defaults table and a bunch of frequently used programming barcodes.

Explanation of Icons

This icon indicates something relevant to this manual.

This icon indicates this information requires extra attention from the reader.

This icon indicates handy tips that can help you use or configure the scanner with ease.

Tasuple
This icon indicates practical examples that can help you to acquaint yourself with operations.

Introduction

RT234-OCR Scanner

Data Port Pinout

PIN	Signal	Type	Function
1	NC	-	NC
2	nTrig	I	Trigger input: normal 3.3V, pull low to 0V @ trigger
3	VCC	P	Power+ (DC5V)
4	TXD	0	RS-232 output
5	RXD	I	RS-232 input
6	CTS	I/O	Clear to send (RS-232)
7	RTS	I/O	Request to send (RS-232)
8	GND	P	Ground
9	D-	I/O	USB signal
10	D+	I/O	

Dimensions (unit: mm)

IR Triggering Range

Optics

Horizontal FOV:

Vertical FOV:

Connecting the RT234-OCR to a Host Device

The scanner must be connected to a host device in actual application, such as PC, POS or any intelligent terminal with USB or RS-232 port, using a USB or RS-232 cable.

USB

USB port on the host device

RS-232

RS-232 port on the host device

Note: Please check the port on the host device and purchase the cable accordingly.

Using USB Cable

Connect the scanner to a host device with a USB cable with RJ45 and USB connectors:

1. Plug the cable's RJ45 connector into the data port on the scanner.
2. Plug the cable's USB connector into the USB port on the host device.

Using RS-232 Cable

Connect the scanner to a host device with an RS-232 cable with RJ45, RS-232 connector and a power jack:

1. Plug the cable's RJ45 connector into the data port on the scanner.
2. Plug the cable's RS- 232 connector into the RS- 232 port on the host device.
3. Plug the power adapter into the power jack of the cable.
4. Connect the power adapter to a power outlet.

Scanning Instructions

1. Position the barcode on mobile phone screen or paper in the center of the scan window.
2. For a successful read, the scanner will send the data to the host with its green Good Read LED flashing once.

Maintenance

$\diamond \quad$ The scan window should be kept clean.
$\triangleleft \quad$ Do not scratch the scan window.
$\diamond \quad$ Use soft brush to remove the stain from the scan window.
$\diamond \quad$ Use the soft cloth to clean the window, such as eyeglass cleaning cloth.
$\triangleleft \quad$ Do not spray any liquid on the scan window.
$\diamond \quad$ Do not use any detergent to clean other parts of the device except for water.

Note: The warranty DOES NOT cover damages caused by inappropriate care and maintenance.

Chapter 2 System Settings

Introduction

There are two ways to configure the RT234-OCR: Barcode programming, command programming.

Barcode Programming

The RT234-OCR can be configured by scanning programming barcodes. All user programmable features/options are described along with their programming barcodes/commands in the following sections.

This programming method is most straightforward. However, it requires manually scanning barcodes. As a result, errors are more likely to occur.

Command Programming

The RT234-OCR can also be configured by serial commands sent from the host device

Users can design an application program to send those command strings to the scanners to perform device configuration. For more information, refer to the Serial Programming Command Manual.

Programming Barcode/ Programming Command/Function

The figure above is an example that shows you the programming barcode and command for the Enter Setup function:

1. The No Case Conversion barcode.
2. The No Case Conversion command.
3. The description of feature/option.
4. ** indicates factory default settings.
** Exit Setup

Use of Programming Command

Besides the barcode programming method, the scanner can also be configured by serial commands (HEX) sent from the host device. All commands must be entered in uppercase letters.

Command Syntax

Prefix StorageType Tag SubTag \{Data\} [,SubTag \{Data\}] [;Tag SubTag \{Data\}] [...] Suffix

Prefix: "~<SOH>0000" (HEX: 7E 01303030 30), 6 characters.
StorageType: "@" (HEX: 40) or "\#" (HEX: 23), 1 character. "@" means permanent setting which will not be lost by removing power from the scanner or rebooting it; "\#" means temporary setting which will be lost by removing power from the scanner or rebooting it.

Tag: A 3-character case-sensitive field that identifies the desired command group. For example, all USB HID-KBW configuration settings are identified with a Tag of KBW.

SubTag: A 3-character case-sensitive field that identifies the desired parameter within the tag group. For example, the SubTag for the keyboard layout is CTY.

Data: The value for a feature or parameter setting, identified by the Tag and SubTag.
Suffix: ";<ETX>" (HEX: 3B 03), 2 characters.
Multiple commands can be issued within one Prefix/Suffix sequence. For configuration commands, only the Tag, SubTag, and Data fields must be repeated for each command in sequence. If an additional command is to be applied to the same Tag, then the command is separated with a comma (,) and only the SubTag and Data fields of the additional commands are issued. If the additional command requires a different Tag field, the command is separated from previous command by a semicolon (;).

Query Commands

For query commands, the entry in the Data field in the syntax above is one of the following characters means:

* (HEX: 2A) What is the scanner's current value for the setting(s).
\& (HEX: 26) What is the factory default value for the setting(s).
${ }^{\wedge}$ (HEX: 5E) What is the range of possible values for the setting(s).

The value of the StoreType field in a query command can be either "@" (HEX: 40) or "\#" (HEX: 23).

A query command with the SubTag field omitted means to query all the settings concerning a tag. For example, to query all the current settings about Code 11, you should enter 7E 0130303030404331 31 2A 3B 03 (i.e. ~<SOH>0000@C11*;<ETX>).

Responses

Different from command sequence, the prefix of a response consists of the six characters of "<STX><SOH>0000" (HEX: 020130303030).

The scanner responds to serial commands with one of the following three responses:
<ACK> (HEX: 06) Indicates a good command which has been processed.
<NAK> (HEX: 15) Indicates a good configuration command with its Data field entry out of the allowable range for this Tag and SubTag combination (e.g. an entry for an inter-keystroke delay of 100 when the field will only allow 2 digits), or an invalid query command.
<ENQ> (HEX: 05) Indicates an invalid Tag or SubTag command.

When responding, the scanner echoes back the command sequence with the status character above inserted directly before each of the punctuation marks (the comma or semicolon) in the command.

Examples

Example 1: Enable Code 11, set the minimum and maximum lengths to 12 and 22 respectively.

Enter: 7E 01303030304043313145 4E 41 31 2C 4D 49 4E 3132 2C 4D 41583232 3B 03
(\sim SOH $>0000 @$ C11ENA1,MIN12,MAX22;<ETX>)

Response: 0201303030304043313145 4E 413106 2C 4D 494 E 313206 2C 4D 4158323206 3B 03
(<STX><SOH>0000@C11ENA1<ACK>,MIN12<ACK>,MAX22<ACK>;<ETX>)

Example 2: Query the current minimum and maximum lengths of Code 11.
Enter: \quad 7E 0130303030404331 31 4D 49 4E 2A 2C 4D 41 58 2A 3B 03 ($\sim<$ SOH $>0000 @ C 11$ MIN* *, MAX* *; $<$ ETX $>$)

Response: 02013030303040433131 4D 49 4E 313206 2C 4D 4158323206 3B 03
(<STX><SOH>0000@C11MIN12<ACK>,MAX22<ACK>;<ETX>)

Enter Setup

Use of Programming Barcodes

Scanning the Enter Setup barcode can enable the scanner to enter the setup mode. Then you can scan a number of programming barcodes to configure your scanner. To exit the setup mode, scan the Exit Setup barcode or a non- programing barcode, or reboot the scanner.

Enter Setup

Programming barcode data (i.e. the characters under programming barcode) can be transmitted to the host device. Scan the appropriate barcode below to enable or disable the transmission of programming barcode data to the host device.

** Do Not Transmit Programming Barcode Data

Transmit Programming Barcode Data
** Exit Setup

Illumination

A couple of illumination options are provided to improve the lighting conditions during every image capture:
Normal: Illumination LEDs are turned on during image capture.
Always On: Illumination LEDs keep on after the scanner is powered on.
Off: Illumination LEDs are off all the time.
Fade Up: Illumination LEDs are dimly lit when in standby mode and gradually increase their brightness during image capture.

Enter Setup

Aiming

When scanning/capturing image, the scanner projects an aiming pattern which allows positioning the target barcode within its field of view and thus makes decoding easier.

Normal: The scanner projects an aiming pattern only during barcode scanning/capture.
Always On: Aiming pattern is constantly on after the scanner is powered on.
Off: Aiming pattern is off all the time.

Good Read LED

The green LED can be programmed to be On or Off to indicate good read.

Enter Setup

Good Read LED Duration

This parameter sets the amount of time that the Good Read LED to remain on following a good read. It is programmable in 1 ms increments from 1 ms to $2,500 \mathrm{~ms}$.

Medium (120ms)

Custom (1-2,500ms)

Set the Good Read LED duration to 800 ms :

1. Scan the Enter Setup barcode.
2. Scan the Custom barcode.
3. Scan the numeric barcodes " 8 ", " 0 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Power On Beep

The scanner can be programmed to beep when it is powered on. Scan the $\mathbf{O f f}$ barcode if you do not want a power on beep.

Good Read Beep

Scanning the Off barcode can turn off the beep that indicate successful decode; scanning the On barcode can turn it back on.

Good Read Beep Duration

This parameter sets the length of the beep the scanner emits on a good read. It is programmable in 1 ms increments from 20 ms to 300 ms .

Set the Good Read Beep duration to 200ms:

1. Scan the Enter Setup barcode.
2. Scan the Custom barcode.
3. Scan the numeric barcodes " 2 ", " 0 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Good Read Beep Frequency

This parameter is programmable in 1 Hz increments from 20 Hz to $20,000 \mathrm{~Hz}$.

Set the Good Read Beep frequency to $\mathbf{2 , 0 0 0 H z}$:

1. Scan the Enter Setup barcode.
2. Scan the Custom barcode.
3. Scan the numeric barcodes " 2 ", " 0 ", " 0 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Good Read Beep Volume

Medium

Scan Mode

- Manual Trigger Mode: A trigger pull activates a decode session. The decode session continues until a barcode is decoded or you release the trigger.
- Sense Mode: The scanner waits for the image stabilization timeout to expire before activating a decode session eagtime it detects a change in ambient illumination. Decode session continues until a barcode is decoded or the decode session timeout expires. In this mode, a trigger pull can also activate a decode session. The decode session continues until a barcode is decoded or the trigger is released. When the session ends, the scanner continues to monitor ambient illumination.Timeout between Decodes (Same Barcode) can avoid undesired rereading of same barcode in a given period of time. Sensitivity can change the Sense Mode's sensibility to changes in ambientillumination.
- Continuous Mode: The scanner automatically starts one decode session after another. To suspend/resume barcode reading, simply press the trigger. Timeout between Decodes (Same Barcode) can avoid undesired rereading of same barcode in a given period of time.
- Pulse Mode: When the trigger is pulled and released, scanning is activated until a barcode is decoded or the decodesession timeout expires (The decode session timeout begins when the trigger is released).

** Sense Mode

Continuous Mode

Decode Session Timeout

This parameter sets the maximum time decode session continues during a scan attempt. It is programmable in 1 ms increments from 1 ms to $3,600,000 \mathrm{~ms}$. When it is set to 0 , the timeout is infinite. The default setting is $3,000 \mathrm{~ms}$.

Set the decode session timeout to $\mathbf{1 , 5 0 0 m s}$:

1. Scan the Enter Setup barcode.
2. Scan the Decode Session Timeout barcode.
3. Scan the numeric barcodes " 1 ", " 5 ", " 0 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Image Stabilization Timeout (Sense Mode)

This parameter defines the amount of time that the scanner waits for the image to stabilize to a point that it can be decoded with more accuracy. It is programmable in 1 ms increments from 0 ms to $3,000 \mathrm{~ms}$. The default setting is 200 ms .

Image Stabilization Timeout

Set the image stabilization timeout to 800 ms :

1. Scan the Enter Setup barcode.
2. Scan the Image Stabilization Timeout barcode.
3. Scan the numeric barcodes " 8 ", " 0 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Timeout between Decodes (Same Barcode)

Timeout between Decodes (Same Barcode) can avoid undesired rereading of same barcode in a given period of time. This feature is only applicable to the Sense and Continuous modes.

To enable/disable the Timeout between Decodes (Same Barcode), scan the appropriate barcode below.
Enable Timeout between Decodes (Same Barcode): Do not allow the scanner to re-read same barcode before the timeout between decodes (same barcode) expires.

Disable Timeout between Decodes (Same Barcode): Allow the scanner to re-read same barcode.

Enable Timeout between Decodes (Same Barcode)

** Disable Timeout between Decodes (Same Barcode)

The following parameter sets the timeout between decodes for same barcode. It is programmable in 1 ms increments from 0 ms to $3,600,000 \mathrm{~ms}$. When it is set to a value greater than 3,000 , the timeout for rereading same programming barcode is limited to $3,000 \mathrm{~ms}$. The default setting is $1,500 \mathrm{~ms}$.

Timeout between Decodes (Same Barcode)

Set the timeout between decodes (same barcode) to $\mathbf{1 , 0 0 0} \mathbf{m s}$:

1. Scan the Enter Setup barcode.
2. Scan the Timeout between Decodes (Same Barcode) barcode.
3. Scan the numeric barcodes " 1 ", " 0 ", " 0 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.

5 Scan the Exit Setun barcode

Enter Setup

Sensitivity (Sense Mode)

Sensitivity specifies the degree of acuteness of the scanner's response to changes in ambient illumination. The higher the sensitivity, the lower requirement in illumination change to trigger the scanner. You can select an appropriate degree of sensitivity that fits the ambient environment. The feature is only applicable to the Sense mode.

Set the sensitivity to Level 10:

1. Scan the Enter Setup barcode.
2. Scan the Custom Sensitivity barcode.
3. Scan the numeric barcodes " 1 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Trigger Commands

When Enable Trigger Commands is selected, you can activate and deactivate the scanner in the Level mode with serial trigger commands. Sending the Start Scanning command (default: <SOH> T <EOT>, user-programmable) to the scanner in the Level mode activates a decode session. The decode session continues until a barcode is decoded or the decode session timeout expires or the scanner receives the Stop Scanning command (default: <SOH>P <EOT>, user- programmable).

** Disable Trigger Commands

Enable Trigger Commands

Modify Start Scanning Command

The Start Scanning command can consist of 1-10 characters (HEX values from $0 x 01$ to $0 x F F$). In this command, the character "?" (HEX: 0x3F) cannot be the first character. The default Start Scanning command is <SOH> T <EOT>.

Modify Start Scanning Command

Set the Start Scanning command to "*T":

1. Scan the Enter Setup barcode.
2. Scan the Modify Start Scanning Command barcode.
3. Scan the numeric barcodes " 2 ", " A ", " 5 " and " 4 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Modify Stop Scanning Command

The Stop Scanning command can consist of 1-10 characters (HEX values from 0×01 to $0 x F F$). In this command, the character "?" (HEX: 0x3F) cannot be the first character. The default Stop Scanning command is <SOH>P <EOT>.

Set the Stop Scanning command to "*P":

1. Scan the Enter Setup barcode.
2. Scan the Modify Stop Scanning Command barcode.
3. Scan the numeric barcodes " 2 ", " A ", " 5 " and " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Scanning Preference

Normal Mode: Select this mode when reading barcodes on paper.
Screen Mode: Select this mode when reading barcodes on the screen.

Decode Area

\sim Whole Area Decoding: The scanner attempts to decode barcode(s) within its field of view, from the center to \mathbf{b} periphery, and transmits the barcode that has been first decoded.
\checkmark Specific Area Decoding: The scanner attempts to read barcode(s) within a specified decoding area and transmits the barcode that has been first decoded. This option allows the scanner to narrow its field of view to make sure it reads only those barcodes intended by the user. For instance, if multiple barcodes are placed closely together, specific area decoding in conjunction with appropriate pre-defined decoding area will insure that only the desired barcode is read.

** Whole Area Decoding

Specific Area Decoding

Enter Setup

If Specific Area Decoding is enabled, the scanner only reads barcodes that intersect the predefined decoding area.

The default decoding area is an area of 40% top, 60% bottom, 40% left and 60% right of the scanner's field of view
You can define the decoding area using the Top of Decoding Area, Bottom of Decoding Area, Left of Decoding Area and Right of Decoding Area barcodes as well as numeric barcode(s) that represent(s) a desired percentage (0-100). The value of Bottom must be greater than that of Top; the value of Right must be greater than that of Left.

Bottom of Decoding Area

Left of Decoding Area

Program the scanner to only read Barcode 1 in the figure above by setting the decoding area to $\mathbf{1 0 \%}$ top, $\mathbf{4 5 \%}$ bottom, $\mathbf{1 5 \%}$ left and 30\% right:

1. Scan the Enter Setup barcode.
2. Scan the Top of Decoding Area barcode.
3. Scan the numeric barcode " 0 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Bottom of Decoding Area barcode.
6. Scan the numeric barcodes " 4 " and " 5 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Top of Decoding Area barcode.
9. Scan the numeric barcodes " 1 " and " 0 " from the "Digit Barcodes" section in Appendix.
10. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
11. Scan the Left of Decoding Area barcode.
12. Scan the numeric barcode " 0 " from the "Digit Barcodes" section in Appendix.
13. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
14. Scan the Right of Decoding Area barcode.
15. Scan the numeric barcodes " 3 " and " 0 " from the "Digit Barcodes" section in Appendix.
16. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
17. Scan the Left of Decoding Area barcode.
18. Scan the numeric barcodes " 1 " and " 5 " from the "Digit Barcodes" section in Appendix.
19. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
20. Scan the Exit Setup barcode.

Image Flipping

Flip Horizontally

Flip Horizontally \& Vertically

Example of image not flipped

Example of image flipped vertically

Example of image flipped horizontally

Example of image flipped horizontally \& vertically

Bad Read Message

Scan the appropriate barcode below to select whether or not to send a bad read message (user-programmable) when a good read does not occur before trigger release, or the decode session timeout expires, or the scanner receives the Stop Scanning command (For more information, see the "Serial Trigger Command" section in this Chapter).

Set Bad Read Message

A bad read message can contain up to 7 characters (HEX values from 0x00 to 0xFF). To set a bad read message, scan the Set Bad Read Message barcode, the numeric barcodes representing the hexadecimal values of desired character(s) and the Save barcode. The default setting is " NG ".

Set Bad Read Message

Set the bad read message to " F " (HEX: 0x46):

1. Scan the Enter Setup barcode.
2. Scan the Set Bad Read Message barcode.
3. Scan the numeric barcodes " 4 " and " 6 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Exit Setup barcode.

Default Settings

Factory Defaults

Scanning the following barcode can restore the scanner to the factory defaults.
You may need to reset all parameters to the factory defaults when:
\leadsto scanner is not properly configured so that it fails to decode barcodes.
\checkmark you forget previous configuration and want to avoid its impact.

Restore All Factory Defaults

Custom Defaults

Scanning the Restore All Custom Defaults barcode can reset all parameters to the custom defaults. Scanning the Save as
Custom Defaults barcode can set the current settings as custom defaults.
Custom defaults are stored in the non-volatile memory.

Save as Custom Defaults

Restore All Custom Defaults

Restoring the scanner to the factory defaults will not remove the custom defaults from the scanner.

Query Product Information

After scanning the barcode below, the product information (including product name, firmware version, decoder version, hardware version, serial number, OEM serial number and manufacturing date) will be sent to the host device.

** Exit Setup

Enter Setup

Chapter 3 RS-232 Interface

Introduction

When the scanner is connected to the RS-232 port of a host device, the scanner will automatically enable RS-232 communication. However, you need to set communication parameters (including baud rate, parity check, data bit and stop bit) on the scanner to match the host device so that two devices can communicate with each other

Baud Rate

Baud rate is the number of bits of data transmitted per second. Set the baud rate to match the host requirements.

** Exit Setup

Parity Check

Set the parity type to match the host requirements.

- Odd Parity: If the data contains an odd number of 1 bits, the parity bit value is set to 0 .
- Even Parity: If the data contains an even number of 1 bits, the parity bit value is set to 0 .
- None: Select this option when no parity bit is required.

Even Parity

Data Bit

Set the number of data bits to match the host requirements.

Stop Bit

The stop bit(s) at the end of each transmitted character marks the end of transmission of one character and prepares the receiving device for the next character in the serial data stream. Set the number of stop bits to match the host requirements.

2 Stop Bits

Hardware Auto Flow Control

If this feature is enabled, the scanner determines whether to transmit data based on CTS signal level. When CTS signal is at a low level which means the serial port's cache memory of receiving device (such as PC) is full, the scanner sends data through RS-232 port until CTS signal is set to high level by receiving device. When the scanner is not ready for receiving, it will set RTS signal to low level. When sending device (such as PC) detects it, it will not send data to the scanner any more to prevent data loss.

If this feature is disabled, reception/transmission of serial data will not be influenced by RTS/CTS signal.

** Disable Hardware Auto Flow Control

Enable Hardware Auto Flow Control

Before enabling this feature, make sure that RTS/CTS signal lines are contained in RS-232 cable. Without the signal lines, RS-232 communication errors will occur.

Chapter 4 USB Interface

Introduction

There are four options for USB connection:

■ USB HID Keyboard: The scanner's transmission is simulated as USB keyboard input with no need for command configuration or a driver. Barcode data could be entered by the virtual keyboard directly and it is also convenient for the host device to receive data.

■ USB Virtual Com: It is compliant with the standard USB CDC class specifications defined by the USB-IF and allows the host device to receive data in the way as a serial port does. A driver is needed when using this feature.

- HID POS (POS HID Barcode Scanner): It is based on the HID interface, with no need for a custom driver. It exd virtual keyboard and traditional RS-232 interface in transmission speed.

■ IBM SurePOS: It conforms to IBM (now Toshiba Global Commerce Solutions) 4698 USB scanner interface specifications.

When the scanner is connected to both USB and RS-232 ports on a host device, it will select the USB connection by default.

USB HID Keyboard

When the scanner is connected to the USB port on a host device, you can enable the USB HID Keyboard feature by scanning the barcode below. Then scanner's transmission will be simulated as USB keyboard input. The Host receives keystrokes on the virtual keyboard. It works on a Plug and Play basis and no driver is required.

USB HID Keyboard

If the host device allows keyboard input, then no extra software is needed for HID Keyboard input.

USB Country Keyboard Types

Keyboard layouts vary from country to country. The default setting is U.S. keyboard.

** Exit Setup

Beep on Unknown Character

Due to the differences in keyboard layouts, some characters contained in barcode data may be unavailable on the selected keyboard. As a result, the scanner fails to transmit the unknown characters.

Scan the appropriate barcode below to enable or disable the emission of beep when an unknown character is detected.

** Do Not Beep on Unknown Character

Beep on Unknown Character

Supposing French keyboard (Country Code: 7) is selected and barcode data "AĐF" is beingdealted with, the keyboard will fail to locate the "Đ" ($0 x D 0$) character and the scanner will ignore the character and continue to process the next one.

Do Not Beep on Unknown Character: The scanner does not beep and the Host receives "AF".

Beep on Unknown Character: The scanner beeps and the Host still receives "AF".

If Emulate ALT+Keypad ON is selected, Beep on Unknown Character does not function.

Emulate ALT+Keypad

When Emulate ALT+Keypad is turned on, any character is sent over the numeric keypad no matter which keyboard type is selected.

1. ALT Make
2. Enter the number corresponding to a desired character on the keypad.
3. ALT Break

After Emulate ALT+Keypad ON is selected, you need to choose the code page with which the barcodes were created and to turn Unicode Encoding On or Off depending on the encoding used by the application software.

Any character can be sent in the ALT+Keypad way. However, since sending a character involves multiple keystroke emulations, this method appears less efficient.

Supposing Emulate ALT+Keypad is ON, Unicode Encoding is Off, and Code Page 1252 (Latin, Western
European) is selected, barcode data "AÐF" (65/208/70) is sent as below:

$$
\begin{aligned}
& \text { "A" - "ALT Make" + "065" + "ALT Break" } \\
& \text { "Đ" -- "ALT Make" + "208" + "ALT Break" } \\
& \text { "F" -- "ALT Make" + "070" + "ALT Break" }
\end{aligned}
$$

Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characteris, it may be because the barcode being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, select the code page with which the barcodes were created by scanning the appropriate barcode below. For PDF417, QR Code, Aztec and Data Matrix, besides setting the code page, you also need to set the character encoding in the "Character Encoding" section in Chapter 6. This feature is only effective when Emulate ALT+Keypad is turned on.

** Code Page 1252 (Latin, Western European)

Code Page 936 (Simplified Chinese, GB2312,GBK)

Code Page 950 (Traditional Chinese, Big5)

Unicode Encoding

Different host program may use different character encodings for handling incoming barcode data. For instance, Microsoft Office Word uses Unicode encoding and therefore you should turn Unicode Encoding on, whereas Microsoft Office Excel or Notepad uses Code Page encoding and therefore you should turn Unicode Encoding off. This feature is only effective when Emulate ALT+Keypad is turned on.

On

Function Key Mapping

When Function Key Mapping is enabled, function character ($0 \mathrm{x} 00-0 \mathrm{x} 1 \mathrm{~F}$) are sent as ASCII sequences over the numeric keypad.

1. CTRL Make
2. Press function key
3. CTRL Break

** Disable Function Key Mapping

Enable Function Key Mapping

Supposing the Function Key Mapping feature is enabled and other parameters of USB HID Keyboard adopt factory defaults, barcode data "A<HT>(i.e. Horizontal Tab)F" (0x41/0x09/0x46) is sent as below:

1. "A" - Keystroke "A".
2. "Ctrl I" - "Ctrl Make" + Keystroke "I" + "Ctrl Break"
3. "F" - Keystroke "F"

For some text editors, "Ctrl I" means italic convert. So the output may be "AF".

Emulate ALT+Keypad ON prevails over Enable Function Key Mapping.

ASCII Function Key Mapping Table

ASCII Function	ASCII Value (HEX)	No Function Key Mapping	Function Key Mapping
NUL	00	Null	Ctrl+2
SOH	01	Keypad Enter	Ctrl+A
STX	02	Caps Lock	Ctrl+B
ETX	03	Null	Ctrl+C
EOT	04	Null	Ctrl+D
ENQ	05	Null	Ctrl+E
ACK	06	Null	Ctrl+F
BEL	07	Enter	Ctrl+G
BS	08	Left Arrow	$\mathrm{Ctrl}+\mathrm{H}$
HT	09	Horizontal Tab	Ctrl+I
LF	0A	Down Arrow	Ctrl+J
VT	0B	Vertical Tab	Ctrl+K
FF	OC	Delete	Ctrl+L
CR	0D	Enter	Ctrl+M
SO	0E	Insert	$\mathrm{Ctrl}+\mathrm{N}$
SI	0F	Esc	Ctrl+0
DLE	10	F11	Ctrl+P
DC1	11	Home	Ctrl+Q
DC2	12	PrintScreen	Ctrl+R
DC3	13	Backspace	Ctrl+S
DC4	14	tab+shift	Ctrl+T
NAK	15	F12	Ctrl +U
SYN	16	F1	Ctrl+V
ETB	17	F2	Ctrl+W
CAN	18	F3	Ctrl+X
EM	19	F4	Ctrl+Y
SUB	1A	F5	Ctrl+Z
ESC	11	F6	Ctrl+[
FS	1C	F7	Ctrl+ \(
)			
GS	1D	F8	Ctrl+]
RS	1E	F9	Ctrl+6
US	1F	F10	Ctrl+-

ASCII Function Key Mapping Table (Continued)

The last five characters ($0 \mathrm{x} 1 \mathrm{~B} \sim 0 \mathrm{x} 1 \mathrm{~F}$) in the table above apply to US keyboard layout only. The following chart provides the equivalents of these five characters for other countries.

Country	Code					
United States	[1]	6	-	
Belgium	[<]	6	-	
Scandinavia	8	$<$	9	6	-	
France	\wedge	8	\$	6	=	
Germany		Ã	+	6	-	
Italy		\backslash	+	6	-	
Switzerland		$<$.	6	-	
United Kingdom	[$\not \subset$]	6	-	
Denmark	8	1	9	6	-	
Norway	8	\backslash	9	6	-	
Spain	[1]	6	-	

Inter-Keystroke Delay

This parameter specifies the delay between emulated keystrokes.

Caps Lock

The Caps Lock ON option can invert upper and lower case characters contained in barcode data. This inversion occurs regardless of the state of Caps Lock key on the host device's keyboard.

Emulate ALT+Keypad ON/ Convert All to Upper Case/ Convert All to Lower Case prevails over Caps Lock ON.
$\mathrm{F}_{\text {uple }}$
When the Caps Lock ON feature is selected, barcode data " AbC " is transmitted as "aBc".

Convert Case

Scan the appropriate barcode below to convert all bar code data to your desired case.

When the Convert All to Lower Case feature is enabled, barcode data " AbC " is transmitted as "abc".

If Emulate ALT+Keypad ON is selected, Convert All to Lower Case and Convert All to Upper Case do not function.

Emulate Numeric Keypad

- Do Not Emulate Numeric Keypad 1: Sending a number (0-9) is emulated as keystroke(s) on main keyboard.
- Emulate Numeric Keypad 1: Sending a number (0-9) is emulated as keystroke(s) on numeric keypad. The state of Num Lock on the simulated numeric keypad is determined by its equivalent on the host device. If Num Lock on the host device is turned off, the output of simulated numeric keypad is function key instead of number.
- Do Not Emulate Numeric Keypad 2: Sending " + ", "一", "*" and "/" is emulated as keystroke(s) on main keyboard.
- Emulate Numeric Keypad 2: Sending "+", "-", "*" and "/" is emulated as keystroke(s) on numeric keypad.

[^0]

Emulate Numeric Keypad 1

** Do Not Emulate Numeric Keypad 2

Emulate Numeric Keypad 2

Emulate ALT+Keypad ON prevails over Emulate Numeric Keypad.
$\mathbf{F}_{\text {mple }}$
Supposing the Emulate Numeric Keypad feature is enabled:
if Num Lock on the host device is ON, "A4.5" is transmitted as "A4.5";
if Num Lock on the host device is OFF, "A4.5" is transmitted as follows:

1. " A " is sent as is because it is not included in numeric keypad;
2. " 4 " is sent as the function key "Cursor Move to Left";
3. "." is sent as the function key "Delete After the Cursor";
4. " 5 " is not sent as it does not correspond to any function key.

Fast Mode

When Fast Mode On is selected, the scanner sends characters to the Host faster. If the Host drops characters, turn the Fast Mode off or change the polling rate to a bigger value.

@KBWFAS1
Fast Mode On

Polling Rate

This parameter specifies the polling rate for a USB keyboard. If the Host drops characters, change the polling rate to a bigger value.

 @KBWPOR0
 1ms

6ms

7 ms

9ms

USB Virtual Com

If your scanner is connected to the USB port on a host device, the USB Virtual Com feature allows the host device to receive data in the way as a serial port does. The scanner will install the driver automatically.

HID POS (POS HID Barcode Scanner)

Introduction

The HID-POS interface is recommended for new application programs. It can send up to 56 characters in a single USB report and appears more efficient than keyboard emulation.

Features:

- HID based, no custom driver required.

■ Way more efficient in communication than keyboard emulation and traditional RS-232 interface.

Access the Scanner with Your Program

Use CreateFile to access the scanner as a HID device and then use ReadFile to deliver the scanned data to the application program. Use WriteFile to send data to the scanner.

For detailed information about USB and HID interfaces, go to www.USB.org.

Acquire Scanned Data

After a barcode is decoded, the scanner sends an input report as below:

	Bit							
Byte	7	6	5	4	3	2	1	0
0	Report ID $=0 \times 02$							
1	Barcode Length							
2-57	Decoded Data (1-56)							
58-61	Reserved							
62	Symbology Identifier or N/C: 0x00							
63	-	-	-	-	-	-	-	Decoded data continued

Send Command to the Scanner

This output report is used to send commands to the scanner. All programming commands can be used.

	Bit							
Byte	7	6	5	4	3	2	1	0
0	Report ID $=0 \times 04$							
1	Length of command							
$2-63$	Command (1-62)							

IBM SurePOS (Tabletop)

IBM SurePOS (Handheld)

IBM SurePOS (Handheld)

Chapter 5 Symbologies

Introduction

Every symbology (barcode type) has its own unique attributes. This chapter provides programming barcodes for configuring the scanner so that it can identify various symbologies. It is recommended to disable those that are rarely used to increase the efficiency of the scanner.

Global Settings

Enable/Disable All Symbologies

If the Disable All Symbologies feature is enabled, the scanner will not be able to read any non-programming barcodes except the programming barcodes.

Enable All Symbologies

Enable/Disable 1D Symbologies

Enable 1D Symbologies

** Exit Setup

Enable/Disable 2D Symbologies

Enable Postal Symbologies

Enable All Postal Symbologies

1D Twin Code

1D twin code is two 1D barcodes of a symbology or of different symbologies paralleled vertically. Both barcodes must have similar specifications and be placed closely together.

There are 3 options for reading 1D twin code:

- Single 1D Code Only: Read either 1D code.
- Twin 1D Code Only: Read both 1D codes. Transmission sequence: upper 1D code followed by lower 1D code.

■ Both Single \& Twin: Read both 1D codes. If successful, transmit as twin 1D code only. Otherwise, try single 1D code only.

** Single 1D Code Only

Twin 1D Code Only

Code 128

Restore Factory Defaults

Restore the Factory Defaults of Code 128

Enable/Disable Code 128

Disable Code 128

If the scanner fails to identify Code 128 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code 128 barcode.
** Exit Setup

Set Length Range for Code 128

The scanner can be configured to only decode Code 128 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Code 128 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Code 128 barcodes with that length are to be decoded.

Set the scanner to decode Code 128 barcodes containing between 8 and12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

EAN-8

Restore Factory Defaults

Restore the Factory Defaults of EAN-8

Enable/Disable EAN-8

* Enable EAN-8

Disable EAN-8

If the scanner fails to identify EAN-8 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable EAN-8 barcode.

Transmit Check Character

EAN-8 is 8 digits in length with the last one as its check character used to verify the integrity of the data.

** Transmit EAN-8 Check Character
** Exit Setup

2-Digit Add-On Code

An EAN-8 barcode can be augmented with a two-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is an EAN-8 barcode while the part circled by red dotted line is a two-digit add-on code.

[^1]

Enable 2-Digit Add-On Code

Disable 2-Digit Add-On Code: The scanner decodes EAN-8 and ignores the add-on code when presented with an EAN-8 plus 2-digit add-on barcode. It can also decode EAN-8 barcodes without 2-digit add-on codes. Enable 2-Digit Add-On Code: The scanner decodes a mix of EAN-8 barcodes with and without 2-digit addon codes.

Enter Setup

5-Digit Add-On Code

An EAN-8 barcode can be augmented with a five-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is an EAN-8 barcode while the part circled by red dotted line is a five-digit add-on code.

** Disable 5-Digit Add-On Code

Enable 5-Digit Add-On Code

Disable 5-Digit Add-On Code: The scanner decodes EAN-8 and ignores the add-on code when presented with an EAN-8 plus 5-digit add-on barcode. It can also decode EAN-8 barcodes without 5-digit add-on codes.
Enable 5-Digit Add-On Code: The scanner decodes a mix of EAN-8 barcodes with and without 5-digit addon codes.

Convert EAN-8 to EAN-13

Convert EAN-8 to EAN-13: Convert EAN-8 decoded data to EAN-13 format before transmission. After conversion, the data follows EAN-13 format and is affected by EAN-13 programming selections (e.g., Check Character).

Do Not Convert EAN-8 to EAN-13: EAN-8 decoded data is transmitted as EAN-8 data, without conversion.

** Do Not Convert EAN-8 to EAN-13

Convert EAN-8 to EAN-13

EAN-13

Restore Factory Defaults

Restore the Factory Defaults of EAN-13

Enable/Disable EAN-13

Disable EAN-13

If the scanner fails to identify EAN-13 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable EAN-13 barcode.

Transmit Check Character

Do Not Transmit EAN-13 Check Character

2-Digit Add-On Code

An EAN-13 barcode can be augmented with a two-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is an EAN-13 barcode while the part circled by red dotted line is a two-digit add-on code.

** Disable 2-Digit Add-On Code

Enable 2-Digit Add-On Code

Disable 2-Digit Add-On Code: The scanner decodes EAN-13 and ignores the add-on code when presented with an EAN-13 plus 2-digit add-on barcode. It can also decode EAN-13 barcodes without 2- digit add-on codes.

Enable 2-Digit Add-On Code: The scanner decodes a mix of EAN-13 barcodes with and without 2-digit addon codes.
** Exit Setup

Enter Setup

5-Digit Add-On Code

An EAN-13 barcode can be augmented with a five-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is an EAN-13 barcode while the part circled by red dotted line is a five-digit add-on code.

** Disable 5-Digit Add-On Code

Enable 5-Digit Add-On Code

Disable 5-Digit Add-On Code: The scanner decodes EAN-13 and ignores the add-on code when presented with an EAN-13 plus 5-digit add-on barcode. It can also decode EAN-13 barcodes without 5- digit add-on codes.

Enable 5-Digit Add-On Code: The scanner decodes a mix of EAN-13 barcodes with and without 5-digit addon codes.

UPC-E

Restore Factory Defaults

Restore the Factory Defaults of UPC-E

Enable/Disable UPC-E

Disable UPC-E

If the scanner fails to identify UPC-E barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable UPC-E barcode.

Transmit Check Character

UPC-E is 8 digits in length with the last one as its check character used to verify the integrity of the data.

** Transmit UPC-E Check Character

2-Digit Add-On Code

A UPC-E barcode can be augmented with a two-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is a UPC-E barcode while the part circled by red dotted line is a two-digit add-on code.

5-Digit Add-On Code

A UPC-E barcode can be augmented with a five-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is a UPC-E barcode while the part circled by red dotted line is a five-digit add-on code.

[^2]

Disable 5-Digit Add-On Code: The scanner decodes UPC-E and ignores the add-on code when presented with a UPC-E plus 5-digit add-on barcode. It can also decode UPC-E barcodes without 5-digit add-on codes.

Enable 5-Digit Add-On Code: The scanner decodes a mix of UPC-E barcodes with and without 5-digit add-on codes.

Transmit Preamble Character

Preamble characters (Country Code and System Character) can be transmitted as part of a UPC-E barcode. Select one of the following options for transmitting UPC-E preamble to the host device: transmit system character only, transmit system character and country code (" 0 " for USA), or transmit no preamble.

No Preamble

System Character \& Country Code

Convert UPC-E to UPC-A

Convert UPC-E to UPC-A: Convert UPC-E (zero suppressed) decoded data to UPC-A format before transmission. After conversion, the data follows UPC-A format and is affected by UPC-A programming selections (e.g., Preamble, Check Character).

Do Not Convert UPC-E to UPC-A: UPC-E decoded data is transmitted as UPC-E data, without conversion.

[^3]

UPC-A

Restore Factory Defaults

Restore the Factory Defaults of UPC-A

Enable/Disable UPC-A

If the scanner fails to identify UPC-A barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable UPC-A barcode.

Transmit Check Character

UPC-A is 13 digits in length with the last one as its check character used to verify the integrity of the data.

** Transmit UPC-A Check Character

2-Digit Add-On Code

A UPC-A barcode can be augmented with a two-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is a UPC-A barcode while the part circled by red dotted line is a two-digit add-on code.

[^4]

Disable 2-Digit Add-On Code: The scanner decodes UPC-A and ignores the add-on code when presented with a UPC-A plus 2-digit add-on barcode. It can also decode UPC-A barcodes without 2-digit add-on codes. Enable 2-Digit Add-On Code: The scanner decodes a mix of UPC-A barcodes with and without 2-digit addon codes.

5-Digit Add-On Code

A UPC-A barcode can be augmented with a five-digit add-on code to form a new one. In the example below, the part surrounded by blue dotted line is a UPC-A barcode while the part circled by red dotted line is a five-digit add-on code.

** Disable 5-Digit Add-On Code

Disable 5-Digit Add-On Code: The scanner decodes UPC-A and ignores the add-on code when presented with a UPC-A plus 5-digit add-on barcode. It can also decode UPC-A barcodes without 5-digit add-on codes.

Enable 5-Digit Add-On Code: The scanner decodes a mix of UPC-A barcodes with and without 5-digit addon codes.

Transmit Preamble Character

Preamble characters (Country Code and System Character) can be transmitted as part of a UPC-A barcode. Select one of the followingoptions for transmitting UPC-A preamble to the host device: transmit system character only or transmit system character and country code (" 0 " for USA).

System Character

System Character \& Country Code

Coupon

UPC-A/EAN-13 with Extended Coupon Code

The following three types of coupon code + extended coupon code are supported:
■ UPC-A (starting with " 5 ") + GS1-128
■ UPC-A (starting with " 5 ") + GS1 Databar

- EAN-13 (starting with "99") + GS1-128

Use the appropriate barcode below to enable or disable UPC-A/EAN-13 with Extended Coupon Code. When left on the default setting (Off), the scanner treats Coupon Codes and Extended Coupon Codes as single bar codes.

If you scan the Allow Concatenation code, when the scanner sees the coupon code and the extended coupon code in a single scan, it transmits both as separate symbologies. Otherwise, it transmits the first coupon code it reads.

If you scan the Require Concatenation code, the scanner must see and read the coupon code and extended coupon code in a single read to transmit the data. No data is output unless both codes are read.

Allow Concatenation

Require Concatenation

When using the UPC-A Coupon feature, please ensure that System Character or System Character \&
Country Code is selected for the "Transmit UPC-A Preamble Character" feature.

Coupon GS1 Databar Output

If you scan coupons that have both UPC and GS1 Databar codes, you may wish to scan and output only the data from the GS1 Databar code. Scan the GS1 Output On barcode below to scan and output only the GS1 Databar code data.

When GS1 Output Off is selected, coupons that have both UPC and GS1 Databar codes are transmitted depending on your selection for the "UPC-A/EAN-13 with Extended Coupon Code" feature.

When using the UPC-A Coupon feature, please ensure that System Character or System Character \& Country Code is selected for the "Transmit UPC-A Preamble Character" feature.

Interleaved 2 of 5

Restore Factory Defaults

Restore the Factory Defaults of Interleaved 2 of 5

Enable/Disable Interleaved 2 of 5

** Enable Interleaved 2 of 5

Disable Interleaved 2 of 5

If the scanner fails to identify Interleaved 2 of 5 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Interleaved 2 of 5 barcode.

Set Length Range for Interleaved 2 of 5

The scanner can be configured to only decode Interleaved 2 of 5 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 6)

Set the Maximum Length (Default: 80)

If minimum length is set to be greater than maximum length, the scanner only decodes Interleaved 2 of 5 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Interleaved 2 of 5 barcodes with that length are to be decoded.

Set the scanner to decode Interleaved 2 of 5 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for Interleaved 2 of 5 and can be added as the last character. It is a calculated value used to verify the integrity of the data.

- Disable: The scanner transmits Interleaved 2 of 5 barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Interleaved 2 of barcodes to verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.

- Transmit Check Character After Verification: The scanner checks the integrity of all Interleaved 2 of 5 barcodes to verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Since Interleaved 2 of 5 must always have an even number of digits, a zero may need to be added as the first digit when the check character is added. The check character is automatically generated when making Interleaved 2 of 5 barcodes.

 Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Interleaved 2 of 5 barcodes
 with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verificationoption is enabled and the minimum length is set to 4 , Interleaved 2 of 5 barcodes with a total length of 4 characters including the check character cannot be read.)

ITF-14

ITF-14 is a special kind of Interleaved 2 of 5 with a length of 14 characters and the last character as the check character.
ITF-14 priority principle: Forthe Interleaved 2 of 5 barcodes with a length of 14 characters and the last character as the check character, the ITF-14 configurations shall take precedence over the Interleaved 2 of 5 settings.

Restore Factory Defaults

Restore the Factory Defaults of ITF-14

Enable/Disable ITF-14

Enable ITF-14 But Do Not Transmit Check Character

Enable ITF-14 and Transmit Check Character

An example of the ITF-14 priority principle: when ITF-14 is enabled and Interleaved 2 of 5 is disabled, the scanner only decodes Interleaved 2 of 5 barcodes with a length of 14 characters and the last character as the check character

ITF-6

ITF-6 is a special kind of Interleaved 2 of 5 with a length of 6 characters and the last character as the check character.
ITF-6 priority principle: For the Interleaved 2 of 5 barcodes with a length of 6 characters and the last character as the check character, the ITF-6 configurations shall take precedence over the Interleaved 2 of 5 settings.

Restore Factory Defaults

Restore the Factory Defaults of ITF-6

Enable/Disable ITF-6

** Disable ITF-6

Enable ITF-6 But Do Not Transmit Check Character

Enable ITF-6 and Transmit Check Character

An example of the ITF-6 priority principle: when ITF-6 is enabled and Interleaved 2 of 5 is disabled, the scanner only decodes Interleaved 2 of 5 barcodes with a length of 6 characters and the last character as the check character.

Matrix 2 of 5

Restore Factory Defaults

Restore the Factory Defaults of Matrix 2 of 5

Enable/Disable Matrix 2 of 5

Disable Matrix 2 of 5

If the scanner fails to identify Matrix 2 of 5 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Matrix 2 of 5 barcode.

Set Length Range for Matrix 2 of 5

The scanner can be configured to only decode Matrix 2 of 5 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 4)

Set the Maximum Length (Default: 80)

If minimum length is set to be greater than maximum length, the scanner only decodes Matrix 2 of 5 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Matrix 2 of 5 barcodes with that length are to be decoded.

Set the scanner to decode Matrix 2 of 5 barcodes containing between 8 and12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for Matrix 2 of 5 and can be added as the last character. It is a calculated value used to verify the integrity of the data.

■ Disable: The scanner transmitsMatrix 2 of 5 barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Matrix 2 of 5 bavodes to verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.

- Transmit Check Character After Verification: The scanner checks the integrity of all Matrix 2 of 5 barcodes to vefthat the data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Since Matrix 2 of 5 must always have an even number of digits, a zero may need to be added as the first digit when the check character is added. The check character is automatically generated when making Matrix 2 of 5 barcodes.

Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Matrix 2 of 5 barcodes with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Matrix 2 of 5 barcodes with a total length of 4 characters including the check character cannot be read.)

Code 39

Restore Factory Defaults

Restore the Factory Defaults of Code 39

Enable/Disable Code 39

Disable Code 39

If the scanner fails to identify Code 39 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code 39 barcode

Set Length Range for Code 39

The scanner can be configured to only decode Code 39 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Code 39 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Code 39 barcodes with that length are to be decoded.

Set the scanner to decode Code 39 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for Code 39 and can be added as the last character. It is a calculated value used to verify the integrity of the data.

- Disable: The scanner transmitsCode 39 barcodes as is.
- Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Code 39 barcodes to verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.
- Transmit Check Character After Verification: The scanner checks the integrity of all Code 39 barcodes to verify tathe data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Do Not Transmit Check Character After Verification

[^5]If the Do Not Transmit Check Character After Verification option is enabled, Code 39 barcodes with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Code 39 barcodes with a total length of 4 characters including the check character cannot be read.)

Transmit Start/Stop Character

Code 39 uses an asterisk (*) for both the start and the stop characters. You can choose whether or not to transmit the start/stop characters by scanning the appropriate barcode below.

** Do Not Transmit Start/Stop Character

Transmit Start/Stop Character

Enable/Disable Code 39 Full ASCII

The scanner can be configured to identify all ASCII characters by scanning the appropriate barcode below.

[^6]

Enable Code 39 Full ASCII

Enter Setup

Enable/Disable Code 32 (Italian Pharma Code)

Code 32 is a variant of Code 39 used by the Italian pharmaceutical industry. Scan the appropriate bar code below to enable or disable Code 32 . Code 39 must be enabled and Code 39 check character verification must be disabled for this parameter to function.

Enable Code 32

Code 32 Prefix

Scan the appropriate barcode below to enable or disable adding the prefix character " A " to all Code 32 barcodes. Code 32 must be enabled for this parameter to function.

** Disable Code 32 Prefix

Enable Code 32 Prefix

Transmit Code 32 Start/Stop Character
Code 32 must be enabled for this parameter to function.

** Do Not Transmit Code 32 Start/Stop Character

Transmit Code 32 Check Character

Code 32 must be enabled for this parameter to function.

** Do Not Transmit Code 32 Check Character

Transmit Code 32 Check Character

Codabar

Restore Factory Defaults

Restore the Factory Defaults of Codabar

Enable/Disable Codabar

Disable Codabar

If the scanner fails to identify Codabar barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Codabar barcode.

Set Length Range for Codabar

The scanner can be configured to only decode Codabar barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 2)

Set the Maximum Length (Default: 60)

If minimum length is set to be greater than maximum length, the scanner only decodes Codabar barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Codabar barcodes with that length are to be decoded.

Set the scanner to decode Codabar barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for Codabar and can be added as the last character. It is a calculated value used to verify the integrity of the data.

■ Disable: The scanner transmits Codabar barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Codabar barcodes to verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.

■ Transmit Check Character After Verification: The scanner checks the integrity of all Codabar barcodes to vefy that the data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Codabar barcodes with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Codabar barcodes with a total length of 4 characters including the check character cannot be read.)

Start/Stop Character

You can set the start/stop characters and choose whether or not to transmit the start/stop characters by scanning the appropriate barcode below.

Transmit Start/Stop Character

** ABCD/ABCD as the Start/Stop Character

ABCD/TN*E as the Start/Stop Character

abcd/abcd as the Start/Stop Character

abcd/tn*e as the Start/Stop Character

Code 93

Restore Factory Defaults

Restore the Factory Defaults of Code 93

Enable/Disable Code 93

** Disable Code 93

If the scanner fails to identify Code 93 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code 93 barcode.

Set Length Range for Code 93

The scanner can be configured to only decode Code 93 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Code 93 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Code 93 barcodes with that length are to be decoded.

Set the scanner to decode Code 93 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

Check characters are optional for Code 93 and can be added as the last two characters, which are calculated values used to verify the integrity of the data.

■ Disable: The scanner transmits Code 93 barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Code 93 barcodes to verify that the data complies with the check character algorithm. Barcodes passing the checks will be transmitted except the last two digits, whereas those failing them will not be transmitted.

■ Transmit Check Character After Verification: The scanner checks the integrity of all Code 93 barcodes to verify tathe data complies with the check character algorithm. Barcodes passing the checks will be transmitted, whereas those failing them will not be transmitted.

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Code 93 barcodes with a length that is less than the configured minimum length after having the two check characters excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Code 93 barcodes with a total length of 4 characters including the two check characters cannot be read.)

China Post 25

Restore Factory Defaults

Restore the Factory Defaults of China Post 25

Enable/Disable China Post 25

Enable China Post 25

If the scanner fails to identify China Post 25 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable China Post 25 barcode.

Set Length Range for China Post 25

The scanner can be configured to only decode China Post 25 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes China Post 25 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only China Post 25 barcodes with that length are to be decoded.

Set the scanner to decode China Post 25 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for China Post 25 and can be added as the last character. It is a calculated value used to verify the integrity of the data.

- Disable: The scanner transmits China Post 25 barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all China Post 25 barmodesto verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.

■ Transmit Check Character After Verification: The scanner checks the integrity of all China Post 25 barcodes to verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, China Post 25 barcodes with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , China Post 25 barcodes with a total length of 4 characters including the check character cannot be read.)

GS1-128 (UCC/EAN-128)

Restore Factory Defaults

Restore the Factory Defaults of GS1-128

Enable/Disable GS1-128

If the scanner fails to identify GS1-128 barcodes, you may first try this solution by scanning the EnterSetup barcode and then Enable GS1-128 barcode.

Set Length Range for GS1-128

The scanner can be configured to only decode GS1-128 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes GS1-128 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only GS1-128 barcodes with that length are to be decoded.

Set the scanner to decode GS1-128 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

GS1 Databar (RSS)

Restore Factory Defaults

Restore the Factory Defaults of GS1 Databar

Enable/Disable GS1 Databar

If the scanner fails to identify GS1 Databar barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable GS1 Databar barcode.

Transmit Application Identifier " 01 "

** Transmit Application Identifier"01"

GS1 Composite (EAN•UCC Composite)

Restore Factory Defaults

Restore the Factory Defaults of GS1 Composite

Enable/Disable GS1 Composite

If the scanner fails to identify GS1 Composite barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable GS1 Composite barcode.

Enable/Disable UPC/EAN Composite

Enable UPC/EAN Composite

Code 11

Restore Factory Defaults

Restore the Factory Defaults of Code 11

Enable/Disable Code 11

** Disable Code 11

If the scanner fails to identify Code 11 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code 11 barcode.

Set Length Range for Code 11

The scanner can be configured to only decode Code 11 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 4)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Code 11 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Code 11 barcodes with that length are to be decoded.

Set the scanner to decode Code 11 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

Check characters are optional for Code 11 and can be added as the last one or two characters, which are calculated values used to verify the integrity of the data.

If the Disable option is enabled, the scanner transmits Code 11 barcodes as is.

** One Check Character, MOD11

Two Check Characters, MOD11/M0D11

Two Check Characters, MOD11/MOD9

One Check Character, MOD11 (Len<=10) Two
Check Characters, MOD11/MOD11(Len>10)

One Check Character, MOD11 (Len<=10) Two Check Characters, MOD11/MOD9 (Len>10)

Transmit Check Character

Do Not Transmit Code 11 Check Character

If you select a check character algorithm and the Do Not Transmit Check Character option, Code 11 barcodes with a length that is less than the configured minimum length after having the check character(s) excluded will not be decoded. (For example, when the One Check Character, MOD11 and Do Not Transmit Check Character options are enabled and the minimum length is set to 4 , Code 11 barcodes with a total length of 4 characters including the check character cannot be read.)

ISBN

Restore Factory Defaults

Restore the Factory Defaults of ISBN

Enable/Disable ISBN

Enable ISBN

If the scanner fails to identify ISBN barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable ISBN barcode.

Set ISBN Format

ISSN

Restore Factory Defaults

Restore the Factory Defaults of ISSN

Enable/Disable ISSN

If the scanner fails to identify ISSN barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable ISSN barcode.

Industrial 25

Restore Factory Defaults

Restore the Factory Defaults of Industrial 25

Enable/Disable Industrial 25

** Disable Industrial 25

If the scanner fails to identify Industrial 25 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Industrial 25 barcode.

Set Length Range for Industrial 25

The scanner can be configured to only decode Industrial 25 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. Toaccomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 6)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Industrial 25 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Industrial 25 barcodes with that length are to be decoded.

Set the scanner to decode Industrial 25 barcodes containing between 8 and $\mathbf{1 2}$ characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for Industrial 25 and can be added as the last character. It is a calculated value used to verify the integrity of the data.

- Disable: The scanner transmits Industrial 25 barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Industrial 25 barcodesto verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.

■ Transmit Check Character After Verification: The scanner checks the integrity of all Industrial 25 barcodes to vefthat the data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Industrial 25 barcodes with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Industrial 25 barcodes with a total length of 4 characters including the check character cannot be read.)

Standard 25

Restore Factory Defaults

Restore the Factory Defaults of Standard 25

Enable/Disable Standard 25

Enable Standard 25

** Disable Standard 25

If the scanner fails to identify Standard 25 barcodes, you may first try this solution by scanning the Enter
Setup barcode and then Enable Standard 25 barcode.

Set Length Range for Standard 25

The scanner can be configured to only decode Standard 25 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. Toaccomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 6)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Standard 25 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Standard 25 barcodes with that length are to be decoded.

Set the scanner to decode Standard 25 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

A check character is optional for Standard 25 and can be added as the last character. It is a calculated value used to verify the integrity of the data.

■ Disable: The scanner transmits Standard 25 barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Standard 25 barcodesto verify that the data complies with the check character algorithm. Barcodes passing the check will be transmitted except the last digit, whereas those failing it will not be transmitted.

■ Transmit Check Character After Verification: The scanner checks the integrity of all Standard 25 barcodes to vefthat the data complies with the check character algorithm. Barcodes passing the check will be transmitted, whereas those failing it will not be transmitted.

Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Standard 25 barcodes with a length that is less than the configured minimum length after having the check character excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Standard 25 barcodes with a total length of 4 characters including the check character cannot be read.)

Plessey

Restore Factory Defaults

Restore the Factory Defaults of Plessey

Enable/Disable Plessey

If the scanner fails to identify Plessey barcodes, you may first try this solution by scanning the Enter Setup
barcode and then Enable Plessey barcode.

Set Length Range for Plessey

The scanner can be configured to only decode Plessey barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. Toaccomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 4)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes Plessey barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Plessey barcodes with that length are to be decoded.

Set the scanner to decode Plessey barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

Check characters are optional for Plessey and can be added as the last two characters, which are calculated values used to verify the integrity of the data.

■ Disable: The scanner transmits Plessey barcodes as is.

■ Do Not Transmit Check Character After Verification: The scanner checks the integrity of all Plessey barcodes to verify that the data complies with the check character algorithm. Barcodes passing the checks will be transmitted except the last two digits, whereas those failing them will not be transmitted.

- Transmit Check Character After Verification: The scanner checks the integrity of all Plessey barcodes to verify tathe data complies with the check character algorithm. Barcodes passing the checks will be transmitted, whereas those failing them will not be transmitted.

Do Not Transmit Check Character After Verification

Transmit Check Character After Verification

If the Do Not Transmit Check Character After Verification option is enabled, Plessey barcodes with a length that is less than the configured minimum length after having the check characters excluded will not be decoded. (For example, when the Do Not Transmit Check Character After Verification option is enabled and the minimum length is set to 4 , Plessey barcodes with a total length of 4 characters including the check characters cannot be read.)

MSI-Plessey

Restore Factory Defaults

Restore the Factory Defaults of MSI-Plessey

Enable/Disable MSI-Plessey

** Disable MSI-Plessey

If the scanner fails to identify MSI-Plessey barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable MSI-Plessey barcode.

Set Length Range for MSI-Plessey

The scanner can be configured to only decode MSI-Plessey barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. Toaccomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 4)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes MSI-Plessey barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only MSI-Plessey barcodes with that length are to be decoded.

Set the scanner to decode MSI-Plessey barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Check Character Verification

Check characters are optional for MSI-Plessey and can be added as the last one or two characters, which are calculated values used to verify the integrity of the data.

If the Disable option is enabled, the scanner transmits MSI-Plessey barcodes as is.

** One Check Character, MOD10

Two Check Characters, M0D10/M0D10

Two Check Characters, MOD10/MOD11

Transmit Check Character

** Transmit MSI-Plessey Check Character

Do Not Transmit MSI-Plessey Check Character

If you select a check character algorithm and the Do Not Transmit Check Character option, MSI-Plessey barcodes with a length that is less than the configured minimum length after having the check character(s) excluded will not be decoded. (For example, when the One Check Character, M0D10 and Do Not Transmit Check Character options are enabled and the minimum length is set to 4, MSI-Plessey barcodes with a total length of 4 characters including the check character cannot be read.)

AIM 128

Restore Factory Defaults

Restore the Factory Defaults of AIM 128

Enable/Disable AIM 128

If the scanner fails to identify AIM 128 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable AIM 128 barcode.

Set Length Range for AIM 128

The scanner can be configured to only decode AIM 128 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 48)

If minimum length is set to be greater than maximum length, the scanner only decodes AIM 128 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only AIM 128 barcodes with that length are to be decoded.

Set the scanner to decode AIM 128 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

ISBT 128

Restore Factory Defaults

Restore the Factory Defaults of ISBT 128

Enable/Disable ISBT 128

Enable ISBT 128

** Disable ISBT 128

If the scanner fails to identify ISBT 128 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable ISBT 128 barcode.

Code 49

Restore Factory Defaults

Restore the Factory Defaults of Code 49

Enable/Disable Code 49

Enable Code 49

** Disable Code 49

If the scanner fails to identify Code 49 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code 49 barcode.

Set Length Range for Code 49

The scanner can be configured to only decode Code 49 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 80)

If minimum length is set to be greater than maximum length, the scanner only decodes Code 49 barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Code 49 barcodes with that length are to be decoded.

Set the scanner to decode Code 49 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Code 16K

Restore Factory Defaults

Restore the Factory Defaults of Code 16K

Enable/Disable Code 16K

Enable Code 16K

** Disable Code 16K

If the scanner fails to identify Code 16K barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code 16K barcode.

Set Length Range for Code 16K

The scanner can be configured to only decode Code 16 K barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 80)

If minimum length is set to be greater than maximum length, the scanner only decodes Code 16 K barcodes with either the minimum or maximum length. If minimum length is same as maximum length, only Code 16 K barcodes with that length are to be decoded.

Set the scanner to decode Code 16 K barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

PDF417

Restore Factory Defaults

Restore the Factory Defaults of PDF417

Enable/Disable PDF417

Disable PDF417

If the scanner fails to identify PDF417 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable PDF417 barcode.

Set Length Range for PDF417

The scanner can be configured to only decode PDF417 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 2710)

Minimum length is not allowed to be greater than maximum length. If you only want to read PDF417 barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode PDF417 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

PDF417 Twin Code

PDF417 twin code is 2 PDF417 barcodes paralleled vertically or horizontally. They must both be either regular or inverse barcodes. They must have similar specifications and be placed closely together.

There are 3 options for reading PDF417 twin codes:

■ Single PDF417 Only: Read either PDF417 code.

■ Twin PDF417 Only: Read both PDF417 codes.
■ Both Single \& Twin: Read both PDF417 codes. If successful, transmit as twin PDF417 only. Otherwise, try single PDF417 only.

Twin PDF417 Only

PDF417 Inverse

Regular barcode: Dark bars on a bright background.
Inverse barcode: Bright bars on a dark background.

** Decode Regular PDF417 Barcodes Only

Character Encoding

** Default Character Encoding

PDF417 ECI Output

Micro PDF417

Restore Factory Defaults

Restore the Factory Defaults of Micro PDF417

Enable/Disable Micro PDF417

Enable Micro PDF417

** Disable Micro PDF417

If the scanner fails to identify Micro PDF417 barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Micro PDF417 barcode.

Set Length Range for Micro PDF417

The scanner can be configured to only decode Micro PDF417 barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 366)

Minimum length is not allowed to be greater than maximum length. If you only want to read Micro PDF417
barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode Micro PDF417 barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

QR Code

Restore Factory Defaults

Restore the Factory Defaults of QR Code

Enable/Disable QR Code

If the scanner fails to identify QR Code barcodes, you may first try this solution by scanning the Enter Setup
barcode and then Enable QR Code barcode.

Set Length Range for QR Code

The scanner can be configured to only decode QR Code barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 7089)

Minimum length is not allowed to be greater than maximum length. If you only want to read QR Code barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

$\mathbf{F}_{\text {apple }}$

Set the scanner to decode QR Code barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

QR Twin Code

QR twin code is 2 QR barcodes paralleled vertically or horizontally. They must both be either regular or inverse barcodes. They must have similar specifications and be placed closely together.

There are 3 options for reading QR twin codes:

- Single QR Only: Read either QR code.

■ Twin QR Only: Read both QR codes. Transmission sequence: left (upper) QR code followed by right (lower) QR code.
■ Both Single \& Twin: Read both QR codes. If successful, transmit as twin QR only. Otherwise, try single QR only.

QR Inverse

Regular barcode: Dark bars on a bright background.
Inverse barcode: Bright bars on a dark background.

Decode Inverse QR Barcodes Only

Character Encoding

** Default Character Encoding

QR ECI Output

Micro QR Code

Restore Factory Defaults

Restore the Factory Defaults of Micro QR

Enable/Disable Micro QR

Disable Micro QR

If the scanner fails to identify Micro QR barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Micro QR barcode.

Set Length Range for Micro QR

The scanner can be configured to only decode Micro $Q R$ barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 35)

Minimum length is not allowed to be greater than maximum length. If you only want to read Micro QR barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

$\mathbf{F}_{\text {uple }}$

Set the scanner to decode Micro QR Code barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Aztec

Restore Factory Defaults

Restore the Factory Defaults of Aztec Code

Enable/Disable Aztec Code

If the scanner fails to identify Aztec Code barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Aztec Code barcode.

Set Length Range for Aztec Code

The scanner can be configured to only decode Aztec barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 3832)

Minimum length is not allowed to be greater than maximum length. If you only want to read Aztec barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode Aztec barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Read Multi-barcodes on an Image

There are three options:
■ Mode 1: Read one barcode only.

- Mode 2: Read fixed number of barcodes only.
- Mode 3: Composite Reading. Read fixed number of barcodes first. If unsuccessful, read one barcode only.

Mode 2

Set the Number of Barcodes

Character Encoding

Aztec ECI Output

Disable Aztec ECI Output

Data Matrix

Restore Factory Defaults

Restore the Factory Defaults of Data Matrix

Enable/Disable Data Matrix

** Enable Data Matrix

Disable Data Matrix

If the scanner fails to identify Data Matrix barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Data Matrix barcode.

Set Length Range for Data Matrix

The scanner can be configured to only decode Data Matrix barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 3116)

Minimum length is not allowed to be greater than maximum length. If you only want to read Data Matrix barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode Data Matrix barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Data Matrix Twin Code

Data Matrix twin code is 2 Data Matrix barcodes paralleled vertically or horizontally. They must both be either regular or inverse barcodes. They must have similar specifications and be placed closely together.

There are 3 options for reading Data Matrix twin codes:

■ Single Data Matrix Only: Read either Data Matrix code.
■ Twin Data Matrix Only: Read both Data Matrix codes. Transmission sequence: left (upper) Data Matrix code followed by right (lower) Data Matrix code.

■ Both Single \& Twin: Read both Data Matrix codes. If successful, transmit as twin Data Matrix only. Otherwise, try single Data Matrix only.

Rectangular Barcode

Data Matrix has two formats:

Square barcodes having the same amount of modules in length and width: $10 * 10,12 * 12 \ldots . . .144^{*} 144$.
Rectangular barcodes having different amounts of models in length and width: $6 * 16,6 * 14 \ldots 14 * 22$.

** Enable Rectangular Barcode

Disable Rectangular Barcode

Data Matrix Inverse

Regular barcode: Dark bars on a bright background.

Inverse barcode: Bright bars on a dark background.

** Decode Regular Data Matrix Barcodes Only

Decode Inverse Data Matrix Barcodes Only

Decode Both

Character Encoding

** Default Character Encoding

Data Matrix ECI Output

Disable Data Matrix ECI Output

** Enable Data Matrix ECI Output

Maxicode

Restore Factory Defaults

Restore the Factory Defaults of Maxicode

Enable/Disable Maxicode

Enable Maxicode

** Disable Maxicode

If the scanner fails to identify Maxicode barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Maxicode barcode.

Set Length Range for Maxicode

The scanner can be configured to only decode Maxicode barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default:150)

Minimum length is not allowed to be greater than maximum length. If you only want to read Maxicode barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode Maxicode barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Chinese Sensible Code

Restore Factory Defaults

Restore the Factory Defaults of Chinese Sensible Code

Enable/Disable Chinese Sensible Code

Enable Chinese Sensible Code

** Disable Chinese Sensible Code

If the scanner fails to identify Chinese Sensible Code barcodes, you may first try this solution by scanning the
Enter Setup barcode and then Enable Chinese Sensible Code barcode.

Set Length Range for Chinese Sensible Code

The scanner can be configured to only decode Chinese Sensible Code barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 7827)

Minimum length is not allowed to be greater than maximum length. If you only want to read Chinese Sensible Code barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode Chinese Sensible Code barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Chinese Sensible Twin Code

Chinese Sensible twin code is 2 Chinese Sensible barcodes paralleled vertically or horizontally. They must both be either regular or inverse barcodes. They must have similar specifications and be placed closely together.

There are 3 options for reading Chinese Sensible twin codes:
■ Single Chinese Sensible Code Only: Read either Chinese Sensible code.

■ Twin Chinese Sensible Code Only: Read both Chinese Sensible codes. Transmission sequence: left (upper) Chinese Sensible code followed by right (lower) Chinese Sensible code.

■ Both Single \& Twin: Read both Chinese Sensible codes. If successful, transmit as twin Chinese Sensible Code only. Otherwise, try single Chinese Sensible Code only.

** Single Chinese Sensible Code Only

Chinese Sensible Code Inverse

Regular barcode: Dark bars on a bright background.
Inverse barcode: Bright bars on a dark background.

** Decode Regular Chinese Sensible Barcodes Only

Decode Inverse Chinese Sensible Barcodes Only

GM Code

Restore Factory Defaults

Restore the Factory Defaults of GM

Enable/Disable GM

If the scanner fails to identify GM barcodes, you may first try this solution by scanning the Enter Setup
barcode and then Enable GM barcode.

Set Length Range for GM

The scanner can be configured to only decode GM barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 2751)

Minimum length is not allowed to be greater than maximum length. If you only want to read GM barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

$\mathbf{F}_{\text {uple }}$

Set the scanner to decode GM barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

Code One

Restore Factory Defaults

Restore the Factory Defaults of Code One

Enable/Disable Code One

Enable Code One

** Disable Code One

If the scanner fails to identify Code One barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Code One barcode.

Set Length Range for Code One

The scanner can be configured to only decode Code One barcodes with lengths that fall between (inclusive) the minimum and maximum lengths. To accomplish it, you need to set the minimum and maximum lengths.

Set the Minimum Length (Default: 1)

Set the Maximum Length (Default: 3550)

Minimum length is not allowed to be greater than maximum length. If you only want to read Code One barcodes with a specific length, set both minimum and maximum lengths to be that desired length.

Set the scanner to decode Code One barcodes containing between 8 and 12 characters:

1. Scan the Enter Setup barcode.
2. Scan the Set the Minimum Length barcode.
3. Scan the numeric barcode " 8 " from the "Digit Barcodes" section inAppendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Set the Maximum Length barcode.
6. Scan the numeric barcodes " 1 " and " 2 " from the "Digit Barcodes" section in Appendix.
7. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
8. Scan the Exit Setup barcode.

USPS Postnet

Restore Factory Defaults

Restore the Factory Defaults of USPS Postnet

Enable/Disable USPS Postnet

If the scanner fails to identify USPS Postnet barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable USPS Postnet barcode.

Transmit Check Character

Do Not Transmit USPS Postnet Check Character

USPS Intelligent Mail

Restore Factory Defaults

Restore the Factory Defaults of USPS Intelligent Mail

Enable/Disable USPS Intelligent Mail

Enable USPS Intelligent Mail

If the scanner fails to identify USPS Intelligent Mail barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable USPS Intelligent Mail barcode.

Royal Mail

Restore Factory Defaults

Restore the Factory Defaults of Royal Mail

Enable/Disable Royal Mail

If the scanner fails to identify Royal Mail barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Royal Mail barcode.

USPS Planet

Restore Factory Defaults

Restore the Factory Defaults of USPS Planet

Enable/Disable USPS Planet

If the scanner fails to identify USPS Planet barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable USPS Planet barcode.

Transmit Check Character

Do Not Transmit USPS Planet Check Character

KIX Post

Restore Factory Defaults

Restore the Factory Defaults of KIX Post

Enable/Disable KIX Post

Enable KIX Post

If the scanner fails to identify KIX Post barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable KIX Post barcode.

Australian Postal

Restore Factory Defaults

Restore the Factory Defaults of Australian Postal

Enable/Disable Australian Postal

Enable Australian Postal

** Disable Australian Postal

If the scanner fails to identify Australian Postal barcodes, you may first try this solution by scanning the
Enter Setup barcode and then Enable Australian Postal barcode.

Specific OCR-B

Restore Factory Defaults

Restore the Factory Defaults of Specific OCR-B

Enable/Disable Specific OCR-B

Enable Specific OCR-B

** Disable Specific OCR-B

If the scanner fails to identify Specific OCR-B barcodes, you may first try this solution by scanning the Enter Setup barcode and then Enable Specific OCR-B barcode.

Passport OCR

Restore Factory Defaults

Restore the Factory Defaults of Passport OCR

Enable/Disable Passport OCR

Enable Passport OCR

If the scanner fails to identify Passport OCR barcodes, you may first try this solution by scanning the Enter
Setup barcode and then Enable Passport OCR barcode.

Chapter 6 Data Formatter

Introduction

You may use the Data Formatter to modify the scanner's output. For example, you can use the Data Formatter to insert characters at certain points in barcode data or to suppress/replace/ send certain characters in barcode data as it is scanned.

Normally, when you scan a barcode, it gets outputted automatically; however, when you create a format, you must use a "send" command (see the "Send Commands" section in this chapter) within the format programming to output data. The maximum size of formatter commands in a data format is 500 characters. By default, the data formatter is disabled. Enable it when required. If you have changed data format settings, and wish to clear all formats and return to the factory defaults, scan the Default Data Format code below.

Default Data Format

Add a Data Format

Data format is used to edit barcode data only. You can program up to four data formats, i.e. Format_0, Format_1, Format_2 and Format_3. When you create a data format, you must specify the application scope of your data format (such as barcode type and data length) and include formatter commands. When scanned data does not match your data format requirements, you will hear the non-match error beep (if the non-match error beep is ON).

There are two methods to program a data format: Programming with barcodes and programming with serial commands.

Programming with Barcodes

The following explains how to program a data format by scanning the specific barcodes. Scanning any irrelevant barcode or failing to follow the setting procedure will result in programming failure. To find the alphanumeric barcodes needed to create a data format, see the "Digit Barcodes" section in Appendix.

Step 1: Scan the Enter Setup barcode.

Step 2: Scan the Add Data Format barcode.

Step 3: Select data format.
Scan a numeric barcode $\mathbf{0}$ or $\mathbf{1}$ or $\mathbf{2}$ or $\mathbf{3}$ to set this to Format_0 or Format_1 or Format_2 or Format_3.
Step 4: Select formatter command type.
Specify what type of formatter commands will be used. Scan a numeric barcode " 6 " to select formatter command type 6. (See the "Formatter Command Type 6" section in this chapter for more information)

Step 5: Set interface type
Scan 999 for any interface type.
Step 6: Set Symbology ID Number
Refer to the "Symbology ID Number" section in Appendix and find the ID number of the symbology to which you want to apply the data format. Scan three numeric barcodes for the symbology ID number. If you wish to create a data format for all symbologies, scan 999.

Step 7: Set barcode data length
Specify what length of data will be acceptable for this symbology. Scan the four numeric barcodes that represent the data length. 9999 is a universal number, indicating all lengths. For example, 32 characters should be entered as 0032 .

Step 8: Enter formatter command
Refer to the "Formatter Command Type 6" section in this chapter. Scan the alphanumeric barcodes that represent the command you need to edit data. For example, when a command is F141, you should scan F141. A command can contain up to 500 characters.

Step 9: Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix to save your data format.

Example: Program format_0 using formatter command type 6, Code 128 containing 10 characters applicable, send all characters followed by "A".

1. Scan the Enter Setup barcode
2. Scan the Add Data Format barcode
3. Scan the $\mathbf{0}$ barcode
4. Scan the $\mathbf{6}$ barcode
5. Scan the $\mathbf{9}$ barcode three times
6. Scan the barcodes 002
7. Scan the barcodes 0010
8. Scan the alphanumeric barcodes F141
9. Scan the Save barcode

Enter the Setup mode
Add a data format
Select format_0
Select formatter command type 6
All interface types applicable
Only Code 128 applicable
Only a length of 10 characters applicable
Send all characters followed by "A" (HEX: 41)
Save the data format

To streamline the programming process, you may as well generate a batch barcode by inputting the command (e.g. @DFMSET069990020010F141;) used to create a data format. See the "Use Batch Barcode" section in Chapter 9 to learn how to put a batch barcode into use.

Programming with Serial Commands

A data format can also be created by serial commands (HEX) sent from the host device. All commands must be entered in uppercase letters.

The syntax consists of the following elements:
Prefix: "~<SOH>0000" (HEX: 7E 01303030 30), 6 characters.
Storage type: "@" (HEX: 40) or "\#" (HEX: 23), 1 character. "@" means permanent setting which will not be lost by removing power from the scanner or rebooting it; "\#" means temporary setting which will be lost by removing power from the scanner or rebooting it.

Add Data Format Command: "DFMSET" (HEX: 4446 4D 5345 54), 6 character.
Data format: " 0 " (HEX: 30) or " 1 " (HEX: 31) or " 2 " (HEX: 32) or " 3 " (HEX: 33), 1 character. " 0 ", " 1 ", " 2 " and " 3 " represent Format_0, Format_1, Format_2 and Format_3 respectively.

Formatter command type: " 6 " (HEX: 36), 1 character.
Interface type: "999" (HEX: 3939 39), 3 characters.
Symbology ID Number: The ID number of the symbology to which you want to apply the data format, 3 characters. 999 indicates all symbologies.

Data length: The length of data that will be acceptable for this symbology, 4 characters. 9999 indicates all lengths. For example, 32 characters should be entered as 0032 .

Formatter commands: The command string used to edit data, max. 116 characters. For more information, see the "Formatter Command Type 6 " section in this chapter.

Suffix: ";<ETX>" (HEX: 3B 03), 2 characters.

Example: Program format_0 using formatter command type 6, Code 128 containing 10 characters applicable, send all characters followed by "A".

Enter: \quad E 0130303030404446 4D 53455430363939393030333939393946313431 3B03
(~<SOH>0000@DFMSET069990020010F141;<ETX>)

Response: $0201303030304044464 D 5345543036393939303033393939394631343106$ 3B 03
(<STX><SOH>0000@DFMSET069990020010F141<ACK>;<ETX>)

Enable/Disable Data Formatter

When Data Formatter is disabled, the data format you have enabled becomes invalid.

You may wish to require the data to conform to a data format you have created. The following settings can be applied to your data format:

Enable Data Formatter, Required, Keep Prefix/Suffix: Scanned data that meets your data format requirements is modified accordingly and gets outputted along with prefixes and suffixes (if prefix and suffix are enabled). Any data that does not match your data format requirements generates an error beep (if Non-Match Error Beep is turned ON) and the data in that barcode is not transmitted.

Enable Data Formatter, Required, Drop Prefix/Suffix: Scanned data that meets your data format requirements is modified accordingly and gets outputted without prefixes and suffixes (even if prefix and suffix are enabled). Any data that does not match your data format requirements generates an error beep (if Non-Match Error Beep is turned ON) and the data in that barcode is not transmitted.

Enable Data Formatter, Not Required, Keep Prefix/Suffix: Scanned data that meets your data format requirements is modified accordingly and gets outputted along with prefixes and suffixes (if prefix and suffix are enabled). Barcode data that does not match your data format requirements is transmitted as read along with prefixes and suffixes (if prefix and suffix are enabled).

Enable Data Formatter, Not Required, Drop Prefix/Suffix: Scanned data that meets your data format requirements is modified accordingly and gets outputted without prefixes and suffixes (even if prefix and suffix are enabled). Barcode data that does not match your data format requirements is transmitted as read along with prefixes and suffixes (if prefix and suffix are enabled).

Enable Data Formatter, Required, Keep Prefix/Suffix

Enable Data Formatter, Required, Drop Prefix/Suffix

Enable Data Formatter, Not Required, Keep Prefix/Suffix

Enable Data Formatter, Not Required, Drop Prefix/Suffix

Non-Match Error Beep

If Non-Match Error Beep is turned ON, the scanner generates an error beep when a barcode is encountered that does not match your required data format.

Non-Match Error Beep Off

Multiple Data Formats

After the Data Formatter is enabled, you can set the scanner to use one or multiple data formats by scanning the appropriate barcode below.

Multiple Data Formats Off: Only one data format (default: Format_0) is put into use. To learn how to switch to another data format, see the "Data Format Selection" section below.

Multiple Data Formats On: The scanner toggles from Format_0 through Format_3 until scanned data matches the requirements of one data format. If no match is found, the scanner generates an error beep (if Non-Match Error Beep is turned ON) and the data is not transmitted.

** Multiple Formats Off

Data Format Selection

You can select a data format you want to use by scanning the appropriate barcode below. Note that this setting is valid only when the Multiple Data Formats feature is turned off.

Format_1

Format_3

Enter Setup

Change Data Format for a Single Scan

You can switch between data formats for a single scan. The next barcode is scanned using the data format selected here, then reverts to the format you have selected above. This setting is valid only when the Multiple Data Formats feature is turned off.

For example, you may have set your scanner to use the data format you saved as Format_3. You can switch to Format_1 for a single trigger pull by scanning the Single Scan - Format_1 barcode below. The next barcode that is scanned uses Format_1, then reverts back to Format_3.

Note: This setting will be lost by removing power from the scanner, or turning off/ rebooting the device.

Single Scan - Format_2

Clear Data Format

There are two methods to remove data format created from your scanner:
Delete one data format: Scan the Clear One barcode, a numeric barcode (0-3) and the Save barcode. For example, to delete Format_2, you should scan the Clear One barcode, the $\mathbf{2}$ barcode and the Save barcode

Delete all data formats: Scan the Clear All barcode.

Clear All

Query Data Formats

You may scan the appropriate barcode below to get the information of data format(s) created by you or preset by manufacturer. For instance, if you have added Format_0 as per the example in the "Add a Data Format" section in this chapter, scanning the Query Current Data Formats barcode, you will get the result: Data Format0:069990020010F141;

Query Current Data Formats

Formatter Command Type 6

When working with the Data Formatter, a virtual cursor is moved along your input data string. The following commandsare used to both move this cursor to different positions, and to select, replace, and insert data into the final output. For the hex value of ASCII characters involved in the commands, refer to the "ASCII Table" in Appendix.

Send Commands

F1 Send all characters

Syntax=F1xx (xx: The insert character's hex value)
Include in the output message all of the characters from the input message, starting from current cursor position, followed by an insert character.

F2 Send a number of characters

Syntax=F2nnxx (nn: The numeric value (00-99) for the number of characters; xx : The insert character's hex value)
Include in the output message a number of characters followed by an insert character. Start from the current cursor position and continue for " $n n$ " characters or through the last character in the input message, followed by character "xx."

F2 Example: Send a number of characters

Send the first 10 characters from the barcode above, followed by a carriage return.

Command string: F2100D

F2 is the "Send a number of characters" command

10 is the number of characters to send
$0 D$ is the hex value for a $C R$

The data is output as: $\mathbf{1 2 3 4 5 6 7 8 9 0}$
<CR>

F3 Send all characters up to a particular character

Syntax=F3ssxx (ss: The particular character's hex value; xx: The insert character's hex value)

Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the particular character "ss," followed by character "xx." The cursor is moved forward to the "ss" character.

F3 Example: Send all characters up to a particular character $||\mid$

Using the barcode above, send all characters up to but not including "D," followed by a carriage return.

Command string: F3440D
F3 is the "Send all characters up to a particular character" command

44 is the hex value for a " D "

0 D is the hex value for a $C R$

The data is output as: $\mathbf{1 2 3 4 5 6 7 8 9 0 A B C}$
<CR>

E9 Send all but the last characters

Syntax=E9nn (nn: The numeric value (00-99) for the number of characters that will not be sent at the end of the message)
Include in the output message all but the last "nn" characters, starting from the current cursor position. The cursor is moved forward to one position past the last input message character included.

F4 Insert a character multiple times

Syntax=F4xxnn (xx: The insert character's hex value; nn: The numeric value (00-99) for the number of times it should be sent)
Send "xx" character " nn " times in the output message, leaving the cursor in the current position.

E9 and F4 Example: Send all but the last characters, followed by 2 tabs

Send all characters except for the last 8 from the barcode above, followed by 2 tabs.

Command string: E908F40902

E9 is the "Send all but the last characters" command 08
is the number of characters at the end to ignore F4 is
the "Insert a character multiple times" command 09 is
the hex value for a horizontal tab

02 is the number of time the tab character is sent

The data is output as: $\mathbf{1 2 3 4 5 6 7 8 9 0} \mathbf{A B}<$ tab><tab>

B3 Insert symbology name

Insert the name of the barcode's symbology in the output message, without moving the cursor.

B4 Insert barcode length

Insert the barcode's length in the output message, without moving the cursor. The length is expressed as a numeric string and does not include leading zeros.

B3 and B4 Example: Insert the symbology name and length

Send the symbology name and length before the barcode data from the barcode above. Break up these insertions with spaces.
End with a carriage return

Command string: B3F42001B4F42001F10D

B3 is the "Insert symbology name" command

F4 is the "Insert a character multiple times" command

20 is the hex value for a space

01 is the number of time the space character is sent

B4 is the "Insert barcode length" command

F4 is the "Insert a character multiple times" command

20 is the hex value for a space

01 is the number of time the space character is sent

F1 is the "Send all characters" command

0 D is the hex value for a CR

The data is output as: Code128 20 1234567890ABCDEFGHIJ
<CR>

Move Commands

F5 Move the cursor forward a number of characters

Syntax=F5nn (nn: The numeric value (00-99) for the number of characters the cursor should be moved ahead)

Move the cursor ahead " nn " characters from current cursor position.

F5 Example: Move the cursor forward and send the data

1234567890ABCDEFGHIJ

Move the cursor forward 3 characters, then send the rest of the barcode data from the barcode above. End with a carriage return.

Command string: F503F10D

F5 is the "Move the cursor forward a number of characters" command

03 is the number of characters to move the cursor

F1 is the "Send all characters" command

0 D is the hex value for a CR

The data is output as: 4567890ABCDEFGHIJ
<CR>

F6 Move the cursor backward a number of characters

Syntax=F6nn (nn: The numeric value (00-99) for the number of characters the cursor should be moved back)

Move the cursor back "nn" characters from current cursor position.

F7 Move the cursor to the beginning
Syntax $=$ F7
Move the cursor to the first character in the input message.

EA Move the cursor to the end

Syntax $=E A$

Move the cursor to the last character in the input message.

Search Commands

F8 Search forward for a character

Syntax $=$ F8xx (xx: The search character's hex value)
Search the input message forward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character.

F8 Example: Send barcode data that starts after a particular character

Search for the letter "D" in barcodes and send all the data that follows, including the "D". Using the barcode above:

Command string: F844F10D
F8 is the "Search forward for a character" command

44 is the hex value for " D "

F1 is the "Send all characters" command

0 D is the hex value for a CR

The data is output as: DEFGHIJ
<CR>

F9 Search backward for a character

Syntax $=\mathrm{F9xx}(\mathrm{xx}:$ The search character's hex value)
Search the input message backward for " xx " character from the current cursor position, leaving the cursor pointing to the " xx " character.

B0 Search forward for a string

Syntax=B0nnnnS (nnnn: The string length (up to 9999); S: The ASCII hex value of each character in the string)

Search forward for " S " string from the current cursor position, leaving cursor pointing to " S " string. For example, B0000454657374 will search forward for the first occurrence of the 4-character string "Test."

B0 Example: Send barcode data that starts after a string of characters

Search for the letters "FGH" in barcodes and send all the data that follows, including "FGH." Using the barcode above:

Command string: B00003464748F10D

B0 is the "Search forward for a string" command

0003 is the string length (3 characters)

46 is the hex value for " F "

47 is the hex value for " G "

48 is the hex value for " H "

F1 is the "Send all characters" command

0 D is the hex value for a CR

The data is output as: FGHIJ
<CR>

B1 Search backward for a string

Syntax $=$ B1nnnnS (nnnn: The string length (up to 9999); S: The ASCII hex value of each character in the string)

Search backward for " S " string from the current cursor position, leaving cursor pointing to " S " string. For example, B1000454657374 will search backward for the first occurrence of the 4 -character string "Test."

E6 Search forward for a non-matching character

Syntax=E6xx (xx: The search character's hexvalue)

Search the input message forward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character.

E6 Example: Remove zeros at the beginning of barcode data

This example shows a barcode that has been zero filled. You may want to ignore the zeros and send all the data that follows. E6 searches forward for the first character that is not zero, then sends all the data after, followed by a carriage return. Using the barcode above:

Command string: E630F10D
E6 is the "Search forward for a non-matching character" command

30 is the hex value for 0

F1 is the "Send all characters" command
$0 D$ is the hex value for a $C R$

The data is output as: $\mathbf{3 7 6 9 2}$
<CR>

E7 Search backward for a non-matching character

Syntax $=$ E7xx (xx: The search character's hex value)
Search the input message backward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character.

Miscellaneous Commands

FB Suppress characters

Syntax $=$ FBnnxxyy..zz (nn: The numeric value (00-15) for the number of suppressed characters; xxyy..zz: The hex value of the characters to be suppressed)

Suppress all occurrences of up to 15 different characters, starting at the current cursor position, as the cursor is advanced by other commands.

FB Example: Remove spaces in barcode data

This example shows a barcode that has spaces in the data. You may want to remove the spaces before sending the data. Using the barcode above

Command string: FB0120F10D
FB is the "Suppress characters" command

01 is the number of the characters to be suppressed

20 is the hex value for a space

F1 is the "Send all characters" command

0 D is the hex value for a $C R$

The data is output as: $\mathbf{3 4 5 6 7 8 9 0}$
<CR>

E4 Replace characters

Syntax $=\mathrm{E}_{4} n n x x_{1} \mathrm{xx}_{2} \mathrm{yy}_{1} \mathrm{yy}_{2} \ldots \mathrm{zz}_{1} \mathrm{Zz}_{2}(\mathrm{nn}$: The total count of the number of characters (characters to be replaced plus replacement characters; xx_{1} : The characters to be replaced, xx_{2} : The replacement characters, continuing through zz_{1} and zZ_{2})

Replace up to 15 characters in the output message, without moving the cursor.

E4 Example: Replace zeros with CRs in barcode data

 1234056780 ABC

If the barcode has characters that the host application does not want included, you can use the E4 command to replace those characters with something else. In this example, you will replace the zeros in the barcode above with carriage returns.

Command string: E402300DF10D

E4 is the "Replace characters" command

02 is the total count of characters to be replaced, plus the replacement characters (0 is replaced by $C R$, so total characters=2) 30 is the hex value for 0
$0 D$ is the hex value for a CR (the character that will replace the 0) F1
is the "Send all characters" command

0D is the hex value for a CR

The data is output as: 1234
5678
ABC
<CR>

BA Replace a string with another

Syntax $=\mathrm{BAnnNN}_{1} \mathrm{SS}_{1} \mathrm{NN}_{2} \mathrm{SS}_{2}$
nn : The count of replacements to be made, if $\mathrm{nn}=00$ or $\mathrm{nn}>=$ the number of occurrences of a string to be replaced, then replace all occurrences of that string.
NN_{1} : The length of the string to be replaced, $\mathrm{NN}_{1}>0$.
SS_{1} : The ASCII hex value of each character in the string to be replaced.
NN_{2} : The length of replacement string, $\mathrm{NN}_{2}>=0$. To replace string " SS_{1} " with NUL (i.e. delete string " SS_{1} "), you should set NN_{2} to 00 and leave out SS_{2}.
SS_{2} : The ASCII hex value of each character in the replacement string.

From the current cursor position, search forward for the occurrence of " SS_{1} " string (of length " NN_{1} ") and replace the string with " SS_{2} " string (of length " NN_{2} ") in the output message until every " SS_{1} " stringis replaced or the count of replacements made reaches " $n n$ " times, without moving the cursor.

BA Example: Replace " 23 "s with "ABC"s in barcode data

cd123abc23bc12ab232

If the barcode has a string of characters that the host application does not want included, you can use the BA command to replace the string with something else. In this example, you will replace the " 23 "s in the barcode above with " ABC "s.

Command string: BA0002323303414243F100

BA is the "Replace a string with another" command

00 is the count of replacements to be made, 00 means to replace all occurrences of that string 02
is the length of the string to be replaced

32 is the hex value for 2 (character in the string to be replaced)

33 is the hex value for 3 (character in the string to be replaced)

03 is the length of the replacement string

41 is the hex value for A (character in the replacement string)

42 is the hex value for B (character in the replacement string)

43 is the hex value for C (character in the replacement string)

F1 is the "Send all characters" command

00 is the hex value for a NUL

The data is output as: cd1ABCabcABCbc12abABC2

BA Example: Remove only the first occurrence of " 23 " s in barcode data

If the barcode has a string of characters that the host application wants removed, you can use the BA command to replace the string with NUL. In this example, you will remove the first occurrence of " 23 " in the barcode above.

Command string: BA0102323300F100

BA is the "Replace a string with another" command

01 is the count of replacements to be made

02 is the length of the string to be replaced

32 is the hex value for 2 (character in the string to be replaced)

33 is the hex value for 3 (character in the string to be replaced)

00 is the length of the replacement string, 00 means to replace the string to be replaced with NUL F1
is the "Send all characters" command

00 is the hex value for a NUL

The data is output as: cd1abc23bc12ab232

EF Insert a delay

Syntax $=$ EFnnnn (nnnn: The delay in 5 ms increments, up to 9999)
Inserts a delay of up to 49,995 milliseconds (in multiples of 5), starting from the current cursor position. This command can only be used with USB HID Keyboard.

EF Example: Insert a delay of 1 s between the $5^{\text {th }}$ and $6^{\text {th }}$ character
Send the first 5 characters in a barcode, wait for 1 s , then send the rest of the barcode data.
Command string: F20500EF0200E900
F2 is the "Send a number of characters" command
05 is the number of characters to send
00 is the hex value for a Null character
EF is the "Insert a delay" command
0200 is the delay value ($5 \mathrm{msX200}=1000 \mathrm{~ms}=1 \mathrm{~s}$)
$E 9$ is the "Send all but the last characters" command
00 is the number of characters that will not be sent at the end of the message

B5 Insert key strokes

Syntax=B5nnssxx (nn: The number of keys pressed (without key modifiers); ss: the key modifier from the table below; xx : the key number from the "Unicode Key Maps" in Appendix.)

Insert a key stroke or combination of key strokes. Key strokes are dependent on your keyboard (see the "Unicode Key Maps" in Appendix). This command can only be used with USB HID Keyboard.

Key Modifiers	
No Key Modifier	00
Shift Left	01
Shift Right	02
Alt Left	04
Alt Right	08
Control Left	10
Control Right	20

For example, B501001F inserts an "a" on a U.S. style keyboard. B5 $=$ the command, $01=$ number of keys pressed (without the key modifier), 00 is No Key Modifier, and 1F is the "a" key. If an " A " were to be inserted, B501011F or B501021F would be entered.

If there are two keystrokes, the syntax would change from Syntax=B5nnssxx for one keystroke to Syntax=B5nnssxxssxx. An example that would insert " aA " is as follows: B502001F011F.

Note: Key modifiers can be added together when needed. Example: Shift Left + Alt Left + Control Left =15.

Chapter 7 Prefix \& Suffix

Introduction

Abstract

A 1D barcode could contain digits, letters, symbols, etc. A 2D barcode could contain more data, such as Chinese characters and other multi-byte characters. However, in real applications, they do not and should not have all information we need, such as barcode type, data acquisition time and delimiter, in order to keep the barcodes short andflexible.

Preffix and suffix are how to fulfill the needs mentioned above. They can be added, removed and modified while the original barcode data remains intact.

Barcode processing procedure:

1. Edit data with Data Formatter
2. Append prefix/suffix
3. Pack data
4. Append terminating character

Global Settings

Enable/Disable All Prefixes/Suffixes

Disable All Prefixes/Suffixes: Transmit barcode data with no prefix/suffix.
Enable All Prefixes/Suffixes: Allow to append Code ID prefix, AIM ID prefix, custom prefix/suffix and terminating character to the barcode data before the transmission.

Enable All Prefixes/Suffixes

Prefix Sequence

Custom + Code ID + AIM ID

Custom Prefix

Enable/Disable Custom Prefix

If custom prefix is enabled, you are allowed to append to the data a user-defined prefix that cannot exceed 10 characters. For example, if the custom prefix is " AB " and the barcode data is " 123 ", the Host will receive "AB123".

Enable Custom Prefix

Set Custom Prefix

To set a custom prefix, scan the Set Custom Prefix barcode then the numeric barcodes corresponding to the hexadecimal value of a desired prefix then the Save barcode.

Note: A custom prefix cannot exceed 10 characters.

Set Custom Prefix

Set the custom prefix to "CODE" (HEX: 0x43/0x4F/0x44/0x45):

1. Scan the Enter Setup barcode.
2. Scan the Set Custom Prefix barcode.
3. Scan the numeric barcodes " 4 ", " 3 ", " 4 ", " F ", " 4 ", " 4 ", " 4 " and " 5 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Enable Custom Prefix barcode.
6. Scan the Exit Setup barcode.

AIM ID Prefix

AIM (Automatic Identification Manufacturers) ID defines symbology identifier (For the details, see the "AIM ID Table" section in Appendix). If AIM ID prefix is enabled, the scanner will add the symbology identifier before the scanned data after decoding.

AIM ID is not user programmable.

Code ID Prefix

Code ID can also be used to identify barcode type. Unlike AIM ID, Code ID is user programmable. Code ID can only consist of one or two English letters.

Restore All Default Code IDs

For the information of default Code IDs, see the "Code ID Table" section in Appendix.

Restore All Default Code IDs

Modify Code ID

See the examples below to learn how to modify a Code ID and restore the default Code IDs of all symbologies.

 \title{
Modify PDF417 Code ID to be "p" (HEX: 0x70):
 \title{
Modify PDF417 Code ID to be "p" (HEX: 0x70):
 1. Scan the Enter Setup barcode.
 2. Scan the Modify PDF417 Code ID barcode.
 3. Scan the numeric barcodes " 7 " and " 0 " from the "Digit Barcodes" section in Appendix.
 4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
 5. Scan the Exit Setup barcode.
}

Restore the default Code IDs of all symbologies:

1. Scan the Enter Setup barcode.
2. Scan the Restore All Default Code IDs barcode.
3. Scan the Exit Setup barcode.

1D symbologies:

Modify Code 128 Code ID

Modify EAN-8 Code ID

Modify UPC-E Code ID

Modify Interleaved 2 of 5 Code ID

Modify Code 39 Code ID

Modify Code 93 Code ID

Modify AIM 128 Code ID

Modify Industrial 25 Code ID

Modify Plessey Code ID

Modify Code 11 Code ID

Modify MSI-Plessy Code ID

@CID031
Modify GS1 Databar Code ID

@CID133
Modify Code 16K Code ID

2D symbologies:

Modify Data Matrix Code ID

Modify Maxicode Code ID

Modify Chinese Sensible Code ID

Modify GM Code ID

Modify Micro QR Code ID

Modify Code One Code ID

Postal symbologies:

Modify USPS Postnet Code ID

Modify USPS Inteligent Mail Code ID

Modify Royal Mail Code ID

Modify KIX Post Code ID

Modify Australian Postal Code ID

Custom Suffix

Enable/Disable Custom Suffix

If custom suffix is enabled, you are allowed to append to the data a user-defined suffix that cannot exceed 10 characters. For example, if the custom suffix is "AB" and the barcode data is " 123 ", the Host will receive " 123 AB ".

Enable Custom Suffix

Set Custom Suffix

To set a custom suffix, scan the Set Custom Suffix barcode then the numeric barcodes corresponding to the hexadecimal value of a desired suffix then the Save barcode.

Note: A custom suffix cannot exceed 10 characters.

Set Custom Suffix

Set the custom suffix to "CODE" (HEX: 0x43/0x4F/0x44/0x45):

1. Scan the Enter Setup barcode.
2. Scan the Set Custom Suffix barcode.
3. Scan the numeric barcodes " 4 ", " 3 ", " 4 ", " F ", " 4 ", " 4 ", " 4 " and " 5 " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Enable Custom Suffix barcode.
6. Scan the Exit Setup barcode.

Data Packing

Introduction

Data packing is designed for a specific group of users who want to have the data packed before transmission. Data packing influences data format, so it is advised to disable this feature when it is not required.

Data Packing Options

\checkmark Disable Data Packing: Transmit decoded data in raw format (unpacketed).
\checkmark Enable Data Packing, Format 1: Transmit decoded data with the packet format 1 defined below.
Packet format 1: [STX + ATTR + LEN] + [AL_TYPE + DATA] + [LRC] STX:
0x02

ATTR: 0x00
LEN: Barcode data length is expressed in 2 bytes ranging from 0x0000 (0) to 0xFFFF (65535).
AL_TYPE: 0x36
DATA: Raw barcode data.
LRC: Check digit.

\curvearrowright Enable Data Packing, Format 2: Transmit decoded data with the packet format 2 defined below.
Packet format 2: [STX + ATTR + LEN] + [AL_TYPE] + [Symbology_ID + DATA] + [LRC] STX:
0x02
ATTR: 0x00

LEN: Barcode data length is expressed in 2 bytes ranging from 0×0000 (0) to 0xFFFF (65535). AL_TYPE:

0x3B
Symbology_ID: The ID number of symbology, 1 byte.
DATA: Raw barcode data.
LRC: Check digit.
LRC calculation algorithm: computation sequence: $0 x F F+$ LEN+AL_TYPE+Symbology_ID+DATA; computation method is XOR, byte by byte.

Enable Data Packing, Format 2

Terminating Character Suffix

Enable/Disable Terminating Character Suffix

A terminating character such as carriage return (CR) or carriage return/line feed pair (CRLF) can only be used to mark the end of data, which means nothing can be added after it.

** Disable Terminating Character Suffix

Enable Terminating Character Suffix

Set Terminating Character Suffix

To set a terminating character suffix, scan the Set Terminating Character Suffix barcode then the numeric barcodes corresponding to the hexadecimal value of a desired terminating character then the Save barcode.

Note: A terminating character suffix cannot exceed 2 characters.

Set Terminating Character Suffix

Set Terminating Character to CR (0x0D)

Set the terminating character suffix to $0 \times 0 \mathrm{~A}$:

1. Scan the Enter Setup barcode.
2. Scan the Set Terminating Character Suffix barcode.
3. Scan the numeric barcodes " 0 " and " A " from the "Digit Barcodes" section in Appendix.
4. Scan the Save barcode from the "Save/Cancel Barcodes" section in Appendix.
5. Scan the Enable Terminating Character Suffix barcode.
6. Scan the Exit Setup barcode.

Chapter 8 Batch Programming

Introduction

Batch programming enables users to integrate a batch of commands into a single batch barcode.

Listed below are batch programming rules:

1. Command format: Command + Parameter Value.
2. Each command is terminated by a semicolon (;). Note that there is no space between a command and its terminator semicolon.
3. Use the barcode generator software to generate a 2D batch barcode.

Example: Create a batch barcode for Illumination Always On, Sense Mode, Decode Session Timeout $=2 \mathrm{~s}$:

1. Input the commands:
@ILLSCN2;SCNMOD2;ORTSET2000;
2. Generate a batch barcode.

When setting up a scanner with the above configuration, scan the Enable Batch Barcode barcode and then the batch barcode generated.

Enable Batch Barcode

Create a Batch Command

A batch command may contain a number of individual commands each of which is terminated by a semicolon (;). For more information, refer to the Serial Programming Command Manual.

Create a Batch Barcode

Batch barcodes can be produced in the format of PDF417, QR Code or Data Matrix.
Example: Create a batch barcode for Illumination Always On, Sense Mode, Decode Session Timeout $=2 \mathrm{~s}$:

1. Input the following commands:
@ILLSCN2;SCNMOD2;ORTSET2000;
2. Generate a PDF417 batch barcode.

Use Batch Barcode

To put a batch barcode into use, scan the following barcodes. (Use the example above.)

Enter Setup

Enable Batch Barcode

Batch Barcode

Digit Barcodes

0~9

1

2

@DIGIT9
9

A~F

@DIGITD
D

Save/Cancel Barcodes

After reading numeric barcode(s), you need to scan the Save barcode to save the data. If you scan the wrong digit(s), you can either scan the Cancel barcode and then start the configuration all over again, or scan the Delete the Last Digit barcode and then the correct digit, or scan the Delete All Digits barcode and then the digits you want.

For instance, after reading the Maximum Length barcode and numeric barcodes " 1 ", " 2 " and " 3 ", you scan:
■ Delete the Last Digit: The last digit " 3 " will be removed.
■ Delete All Digits: All digits " 123 " will be removed.

- Cancel: The maximum length configuration will be cancelled. And the scanner is still in the setup mode.

Delete the Last Digit

Factory Defaults Table

Parameter	Factory Default	Remark
System Settings		
Barcode Programming	Disabled (Exit Setup)	
Programming Barcode Data	Do not transmit	
Illumination	Normal	
Aiming	Normal	
Good Read LED	On	
Good Read LED Duration	Short (20ms)	
Power On Beep	On	
Good Read Beep	On	
Good Read Beep Duration	Medium (80ms)	
Good Read Beep Frequency	Medium (2730Hz)	
Good Read Beep Volume	Loud	
Scan Mode	Sense Mode	
Decode Session Timeout	$3,000 \mathrm{~ms}$.	1-3,600,000ms; 0: Infinite
Image Stabilization Timeout (Sense Mode)	200 ms	$0-3,000 \mathrm{~ms}$
Timeout between Decodes (Same Barcode)	Disabled	
	1,500ms	0-3,600,000ms
Sensitivity	Medium Sensitivity	
Trigger Commands	Disabled	
Scanning Preference	Normal Mode	
Decode Area	Whole Area Decoding	
Specify Decoding Area	40\% top, 60% bottom, 40% left, 60% right	
Image Flipping	Do Not Flip	
Bad Read Message	Off	
	NG	1-7 characters
RS-232 Interface		
Baud Rate	9600	
Parity Check	None	
Data Bits	8	
Stop Bits	1	
Hardware Auto Flow Control	Disabled	
USB Interface		
Default	USB CDC	

USB Country Keyboard	US keyboard	USB HID Keyboard
Beep on Unknown Character	Off	USB HID Keyboard
Emulate ALT+Keypad	Off	USB HID Keyboard
Code Page	Code Page 1252 (Latin, Western European)	USB HID Keyboard
Unicode Encoding	Off	USB HID Keyboard
Function Key Mapping	Off	USB HID Keyboard
Inter-Keystroke Delay	No Delay	USB HID Keyboard
Caps Lock	Off	USB HID Keyboard
Convert Case	No Case Conversion	USB HID Keyboard
Emulate Numeric Keypad 1	Off	USB HID Keyboard
Emulate Numeric Keypad 2	Off	USB HID Keyboard
Fast Mode	Off	USB HID Keyboard
Polling Rate	4 ms	USB HID Keyboard
Symbologies		
Global Settings		
1D Twin Code	Single 1D Code Only	
Code 128		
Code 128	Enabled	
Maximum Length	48	
Minimum Length	1	
EAN-8		
EAN-8	Enabled	
Check Character	Transmit	
2-Digit Add-On Code	Disabled	
5-Digit Add-On Code	Disabled	
Convert EAN-8 to EAN-13	Disabled	
EAN-13		
EAN-13	Enabled	
Check Character	Transmit	
2-Digit Add-On Code	Disabled	
5-Digit Add-On Code	Disabled	
UPC-E		
UPC-E	Enabled	
Check Character	Transmit	
2-Digit Add-On Code	Disabled	
5-Digit Add-On Code	Disabled	

Transmit Preamble Character	System Character	
Convert UPC-E to UPC-A	Disabled	
UPC-A		
UPC-A	Enabled	
Check Character	Transmit	
2-Digit Add-On Code	Disabled	
5-Digit Add-On Code	Disabled	
Transmit Preamble Character	No Preamble	
Coupon		
UPC-A/EAN-13 with Extended Coupon Code	Off	
Coupon GS1 DataBar Output	Off	
Interleaved 2 of 5		
Interleaved 2 of 5	Enabled	
Maximum Length	80	
Minimum Length	6	No less than 4
Check Character Verification	Disabled	
ITF-14		
ITF-14	Disabled	
ITF-6		
ITF-6	Disabled	
Matrix 2 of 5		
Matrix 2 of 5	Enabled	
Maximum Length	80	
Minimum Length	4	No less than 4
Check Character Verification	Disabled	
Code 39		
Code 39	Enabled	
Maximum Length	48	
Minimum Length	1	
Check Character Verification	Disabled	
Start/Stop Character	Do not transmit	
Code 39 Full ASCII	Disabled	
Code 32 Pharmaceutical (PARAF)	Disabled	
Code 32 Prefix	Disabled	
Code 32 Start/Stop Character	Do not transmit	

Code 32 Check Character	Do not transmit	
Codabar		
Codabar	Enabled	
Maximum Length	60	
Minimum Length	2	
Check Character Verification	Disabled	
Start/Stop Character	Do not transmit	
	ABCD/ABCD	
Code 93		
Code 93	Disabled	
Maximum Length	48	
Minimum Length	1	
Check Character Verification	Do Not Transmit Check Character After Verification	
China Post 25		
China Post 25	Disabled	
Maximum Length	48	
Minimum Length	1	
Check Character Verification	Disabled	
GS1-128 (UCC/EAN-128)		
GS1-128	Enabled	
Maximum Length	48	
Minimum Length	1	
GS1 Databar		
GS1 Databar	Enabled	
Application Identifier "01"	Transmit	
EAN•UCC Composite		
GS1 Composite	Disabled	
UPC/EAN Composite	Disabled	
Code 11		
Code 11	Disabled	
Maximum Length	48	
Minimum Length	4	No less than 4
Check Character Verification	One Check Character, MOD11	
Check Character	Transmit	
ISBN		
ISBN	Disabled	

Set ISBN Format	ISBN-10	
ISSN		
ISSN	Disabled	
Industrial 25		
Industrial 25	Disabled	
Maximum Length	48	
Minimum Length	6	No less than 4
Check Character Verification	Disabled	
Standard 25		
Standard 25	Disabled	
Maximum Length	48	
Minimum Length	6	No less than 4
Check Character Verification	Disabled	
Plessey		
Plessey	Disabled	
Maximum Length	48	
Minimum Length	4	No less than 4
Check Character Verification	Disabled	
MSI-Plessey		
MSI-Plessey	Disabled	
Maximum Length	48	
Minimum Length	4	No less than 4
Check Character Verification	One Check Character, MOD10	
Check Character	Transmit	
AIM 128		
AIM 128	Disabled	
Maximum Length	48	
Minimum Length	1	
ISBT 128		
ISBT 128	Disabled	
Code 49		
Code 49	Disabled	
Maximum Length	80	
Minimum Length	1	
Code 16K		
Code 16K	Disabled	

Australian Postal		
Australian Postal	Disabled	
Specific OCR-B		
Specific OCR-B	Disabled	
Passport OCR		
Passport OCR	Disabled	
Data Formatter		
Data Formatter	Disabled	
Non-Match Error Beep	On	
Multiple Data Formats	Off	
Data Format Selection	Format_0	
Prefix \& Suffix		
All Prefixes/Suffixes	Disabled	
Prefix Sequence	Code ID+ Custom +AIM ID	
Custom Prefix	Disabled	
AIM ID Prefix	Disabled	
Code ID Prefix	Disabled	
Custom Suffix	Disabled	
Data Packing	Disable Data Packing	
Terminating Character Suffix	Disabled	

AIM ID Table

Symbology	AIM ID	Possible AIM ID Modifiers (m)
Code128]C0	
GS1-128 (UCC/EAN-128)]C1	
EAN-8]E4	
EAN-8 with Addon]E3	
EAN-13]E0	
EAN-13 with Addon]E3	
UPC-E]E0	
UPC-E with Addon]E3	
UPC-A]E0	
UPC-A with Addon]E3	
Interleaved 2 of 5	JIm	0, 1, 3
ITF-14	JIm	1,3
ITF-6	JIm	1,3
Matrix 2 of 5]X0	
Code 39]Am	0, 1, 3, 4, 5, 7
Codabar]Fm	0, 2, 4
Code 93]G0	
China Post 25]X0	
AIM 128]C2	
ISBT 128]C4	
ISSN]X0	
ISBN]X0	
Industrial 25]S0	
Standard 25]R0	
Plessey]P0	
Code 11]Hm	0,1,3
MSI Plessey]Mm	0,1
GS1 Composite	Jem	0-3
GS1 Databar (RSS)]e0	
Code 49]T0	
Code 16K]K0	

Symbology	AIM ID	Possible AIM ID Modifiers (m)
PDF417]Lm	0-2
QR Code]Qm	0-6
Aztec]zm	0-9, A-C
Data Matrix]dm	0-6
Maxicode	JUm	0-3
Chinese Sensible Code]X0	
GM]gm	(0~9)
Micro PDF417]L0	
Micro QR	JQ1	
Code One]X0	
USPS Postnet]X0	
USPS Inteligent Mail]X0	
Royal Mail]X0	
USPS Planet]X0	
KIX Post]X0	
Australian Postal]X0	
Specific OCR-B]o2	
Passport OCR]o2	

Note: "m" represents the AIM modifier character. Refer to ISO/IEC 15424:2008 Information technology - Automatic identification and data capture techniques - Data Carrier Identifiers (including Symbology Identifiers) for AIM modifier character details.

Code ID Table

Symbology	Code ID
Code128	j
GS1-128 (UCC/EAN-128)	j
EAN-8	d
EAN-13	d
UPC-E	c
UPC-A	c
Interleaved 2 of 5	e
ITF-14	e
ITF-6	e
Matrix 2 of 5	v
Code 39	b
Codabar	a
Code 93	i
China Post 25	X
AIM 128	X
ISBT 128	X
ISSN	g
ISBN	B
Industrial 25	I
Standard 25	f
Plessey	n
Code 11	H
MSI Plessey	m
GS1 Composite	y
GS1 Databar (RSS)	R
Code 49	X
Code 16K	X
PDF417	r
QR Code	s
Aztec	z
Data Matrix	u

Symbology	Code ID
MaxiCode	x
Chinese Sensible Code	h
GM Code	x
Micro PDF417	R
Micro QR	X
Code One	X
USPS Postnet	P
USPS Inteligent Mail	M
Royal Mail	x
USPS Planet	L
KIX Post	K
Australian Postal	A
Specific OCR-B	S
Passport OCR	0

Symbology ID Number

Symbology	ID Number
Code 128	002
GS1-128 (UCC/EAN-128)	003
EAN-8	004
EAN-13	005
UPC-E	006
UPC-A	007
Interleaved 2 of 5	008
ITF-14	009
ITF-6	010
Matrix 2 of 5	011
Code 39	013
Codabar	015
Code 93	017
China Post 25	019
AIM 128	020
ISBT 128	021
ISSN	023
ISBN	024
Industrial25	025
Standard25	026
Plessey	027
Code11	028
MSI-Plessey	029
GS1 Composite	030
GS1 Databar (RSS)	031
PDF417	032
QR Code	033
Aztec	034
Data Matrix	035
Maxicode	036
Chinese Sensible Code	039

Symbology	
GM Code	040
Micro PDF417 Number	
Micro QR	042
Code One	043
Specific OCR-B	048
Passport OCR	064
USPS Postnet	066
USPS Inteligent Mail	096
Royal Mail	097
USPS Planet	098
KIX Post	099
Australian Postal	100

ASCII Table

Hex	Dec	Char	
00	0	NUL	(Null char.)
01	1	SOH	(Start of Header)
02	2	STX	(Start of Text)
03	3	ETX	(End of Text)
04	4	EOT	(End of Transmission)
05	5	ENQ	(Enquiry)
06	6	ACK	(Acknowledgment)
07	7	BEL	(Bell)
08	8	BS	(Backspace)
09	9	HT	(Horizontal Tab)
0a	10	LF	(Line Feed)
0b	11	VT	(Vertical Tab)
0c	12	FF	(Form Feed)
0d	13	CR	(Carriage Return)
0 e	14	SO	(Shift Out)
Of	15	SI	(Shift In)
10	16	DLE	(Data Link Escape)
11	17	DC1	(XON) (Device Control 1)
12	18	DC2	(Device Control 2)
13	19	DC3	(XOFF) (Device Control 3)
14	20	DC4	(Device Control 4)
15	21	NAK	(Negative Acknowledgment)
16	22	SYN	(Synchronous Idle)
17	23	ETB	(End of Trans. Block)
18	24	CAN	(Cancel)
19	25	EM	(End of Medium)
1a	26	SUB	(Substitute)
1b	27	ESC	(Escape)
1c	28	FS	(File Separator)
1d	29	GS	(Group Separator)

Hex	Dec	Char	
1 e	30	RS	(Request to Send)
1f	31	US	(Unit Separator)
20	32	SP	(Space)
21	33	!	(Exclamation Mark)
22	34	"	(Double Quote)
23	35	\#	(Number Sign)
24	36	\$	(Dollar Sign)
25	37	\%	(Percent)
26	38	\&	(Ampersand)
27	39		(Single Quote)
28	40	((Left/ Opening Parenthesis)
29	41)	(Right/ Closing Parenthesis)
2a	42	*	(Asterisk)
2b	43	+	(Plus)
2c	44	,	(Comma)
2d	45	-	(Minus/ Dash)
2 e	46	.	(Dot)
2f	47	1	(Forward Slash)
30	48	0	
31	49	1	
32	50	2	
33	51	3	
34	52	4	
35	53	5	
36	54	6	
37	55	7	
38	56	8	
39	57	9	
3a	58	:	(Colon)
3 b	59	;	(Semi-colon)
3c	60	$<$	(Less Than)
3d	61	$=$	(Equal Sign)

Hex	Dec	Char
3e	62	> (Greater Than)
3 f	63	? (Question Mark)
40	64	@ (AT Symbol)
41	65	A
42	66	B
43	67	C
44	68	D
45	69	E
46	70	F
47	71	G
48	72	H
49	73	I
4a	74	J
4b	75	K
4c	76	L
4d	77	M
4 e	78	N
4f	79	0
50	80	P
51	81	Q
52	82	R
53	83	S
54	84	T
55	85	U
56	86	V
57	87	W
58	88	X
59	89	Y
5a	90	Z
5b	91	[(Left/ Opening Bracket)
5c	92	\ (Back Slash)
5d	93] (Right/ Closing Bracket)

Hex	Dec	Char
5 e	94	\wedge (Caret/ Circumflex)
5 f	95	_ (Underscore)
60	96	' (Grave Accent)
61	97	a
62	98	b
63	99	c
64	100	d
65	101	e
66	102	f
67	103	g
68	104	h
69	105	i
6a	106	j
6b	107	k
6c	108	1
6d	109	m
6 e	110	n
6 f	111	o
70	112	p
71	113	q
72	114	r
73	115	s
74	116	t
75	117	u
76	118	v
77	119	w
78	120	x
79	121	y
7 a	122	z
7b	123	\{ (Left/ Opening Brace)
7c	124	1 (Vertical Bar)
7d	125	\} (Right/ Closing Brace)
7 e	126	\sim (Tilde)
7f	127	DEL (Delete)

Unicode Key Maps

104 Key U.S. Style Keyboard

105 Key European Style Keyboad

For any technical question, please contact us at: support@rtscan.net

[^0]: ** Do Not Emulate Numeric Keypad 1

[^1]: ** Disable 2-Digit Add-On Code

[^2]: ** Disable 5-Digit Add-On Code

[^3]: ** Do Not Convert UPC-E to UPC-A

[^4]: ** Disable 2-Digit Add-On Code

[^5]: Transmit Check Character After Verification

[^6]: ** Disable Code 39 Full ASCII

