

APPLICATION FOR ELECTROMAGNETIC COMPATIBILITY DIRECTIVE

On Behalf of

RTSCAN TECHNOLOGY LIMITED

OEM BARCODE SCANNER

Model No.: RT218, RT218A, RT218B, RT218C

Prepared for : RTSCAN TECHNOLOGY LIMITED

Address 553-555, Dongming Building, Minzhi Street, Longhua District, Shenzhen

518109, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A2209257-C01-R01
Date of Receipt : October 9, 2022
Date of Test : October 9-10, 2022
Date of Report : October 11, 2022

Version Number : V0

TABLE OF CONTENTS

Descrip	otion	Page
1. Genera	al Information	7
	. Description of Device (EUT)	
	. Accessories of Device (EUT)	
	. Tested Supporting System Details	
	. Block Diagram of connection between EUT and simulators	
	ary Of Standards And Results	
	Description of Standards and Results	
2.2	. Test Mode Description	10
2.3	. Test Facility	10
2.4	. Measurement Uncertainty	10
2.5	. Test Equipment List	11
3. Condu	cted Emissions Test	14
3.1	. Test Limit	14
3.2	. Block Diagram of Test Setup	14
3.3	. Configuration of EUT on Test	15
3.4	. Operating Condition of EUT	15
3.5	. Test Procedure	15
3.6	. Conducted Emissions at Mains Terminals Test Results	16
3.7	. Conducted Emissions From Asymmetric Mode Test Results	19
4. Radiate	ed Emissions Test	20
4.1	. Test Limit	20
4.2	. Block Diagram of Test Setup	21
4.3	. Configuration of EUT on Test	22
4.4	. Operating Condition of EUT	22
4.5	. Test Procedure	22
4.6	. Radiated Emissions Test Results	24
5. Harmo	nic Current Test	30
5.1	. Test Limit	30
5.2	. Block Diagram of Test Setup	30
5.3	. Configuration of EUT on Test	31
5.4	. Operating Condition of EUT	31
5.5	. Test Procedure	31
5.6	. Harmonic Current Test Results	32
6. Voltage	e Fluctuations & Flicker Test	33
6.1	. Block Diagram Of Test Setup	33
6.2	. Test Standard	33
6.3	. Voltage Fluctuation And Flicker Test Limits	33
6.4	. Configuration Of EUT On Test	34
6.5	. Operating Condition Of EUT	34
6.6	. Test Procedure	34
6.7	. Voltage Fluctuation And Flicker Test Results	35

7. lr	mmunity General performance criteria	36
8. E	Electrostatic Discharge Test	37
	8.1. Electrostatic Discharge Test Limits	37
	8.2. Block Diagram of Test Setup	37
	8.3. Configuration of EUT on Test	37
	8.4. Operating Condition of EUT	37
	8.5. Test Procedure	37
	8.6. Electrostatic Discharge Test Results	39
9. R	RF Field Strength Susceptibility Test	40
	9.1. Test Level	40
	9.2. Block Diagram of Test Setup	40
	9.3. Configuration of EUT on Test	41
	9.4. Operating Condition of EUT	41
	9.5. Test Procedure	41
	9.6. RF Field Strength Susceptibility Test Results	42
10.	Electrical Fast Transient/Burst Immunity Test	45
	10.1. Test Level	
	10.2. Block Diagram of Test Setup	
	10.3. Configuration of EUT on Test	45
	10.4. Operating Condition of EUT	
	10.5. Test Procedure	46
	10.6. Electrical Fast Transient/Burst Immunity Test Results	
11.	Surge Test	
	11.1. Test Level	
	11.2. Block Diagram of Test Setup	
	11.3. Configuration of EUT on Test	
	11.4. Operating Condition of EUT	
	11.5. Test Procedure	
	11.6. Surge Test Results	
12.	Injected Currents Susceptibility Test	
	12.1. Test Level	
	12.2. Block Diagram of Test Setup	
	12.3. Configuration of EUT on Test	
	12.4. Operating Condition of EUT	
	12.5. Test Procedure	
	12.6. Injected Currents Susceptibility Test Results	
13.	Magnetic Field Immunity Test	
	13.1. Test Level	
	13.2. Block Diagram of Test Setup	
	13.3. Configuration of EUT on Test	
	13.4. Operating Condition of EUT	
	13.5. Test Procedure	
	13.6. Magnetic Field Immunity Test Results	
14.	Voltage Dips And Interruptions Test	
	14.1 Test Level	56

	14.2. Block Diagram of Test Setup	. 56
	14.3. Configuration of EUT on Test	. 56
	14.4. Operating Condition of EUT	. 56
	14.5. Test Procedure	. 56
	14.6. Voltage Dips And Interruptions Test Results	. 57
15.	Photograph	. 58
	15.1. Photo Of Radiated Emissions Test (In Semi Anechoic Chamber)	. 58
	15.2. Photo of Conducted Emissions From Asymmetric Mode Test	. 59
	15.3. Photo of Electrostatic Discharge Test	. 59
	15.4. Photo of RF Field Strength Susceptibility Test	. 60
16.	Photos Of The EUT	. 61

TEST REPORT DECLARATION

Applicant : RTSCAN TECHNOLOGY LIMITED

553-555, Dongming Building, Minzhi Street, Longhua District, Shenzhen 518109,

Address : China

Manufacturer : RTSCAN TECHNOLOGY LIMITED

553-555, Dongming Building, Minzhi Street, Longhua District, Shenzhen 518109,

Address : China

EUT Description : OEM BARCODE SCANNER

(A) Model No. : RT218, RT218A, RT218B, RT218C

(B) Trademark : LETRTscan

Measurement Standard Used:

EN 55032:2015+A1:2020 EN 55035:2017+A11:2020

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the EN 55032 and EN 55035 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

ALPHA's reports is using a digital certificate that is trusted on Adobe's official server. If there is no digital certificate or the digital certificate shows damaged in your report. Please do not accept the report.

Tested by (name + signature).....

Project Engineer

Approved by (name + signature)......

Project Manager

Revision History

Revision	Issue Date	Revisions	Revised By	
V0	October 11, 2022	Initial released Issue	Ben Sun	

1. General Information

Diff

1.1. Description of Device (EUT)

Description : OEM BARCODE SCANNER

Model Number : RT218, RT218A, RT218B, RT218C

There is no difference except the name of the model. All tests are made with

the RT218 model.

Test Voltage : Power from PC

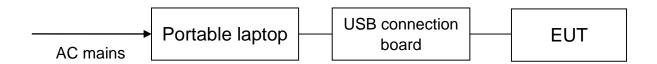
EUT information : Input : Power from PC

Highest frequency : More than 108MHz

Trademark : Trademark : Trademark : Trademark

Software version : N/A Hardware version : N/A

1.2. Accessories of Device (EUT)


Power Source : /

1.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number
1.	Portable laptop	Lenovo	ThinkPad E14	PF-29216Q
2.	USB connection board	/	/	/

1.4. Block Diagram of connection between EUT and simulators

For test

Signal Cable Description of the above Support Units							
No.	Port Name	Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)		
(a)	/	/	/	/	/		

Limits

Results

2. Summary Of Standards And Results

2.1. Description of Standards and Results

Description of Test Item

The EUT have been tested according to the applicable standards as referenced below:

EMISSION

Standard

·					
Radiated Emissions	EN 55032:2015+A1:	2020	20 Annex A.4 & A.5		
Radiated Emissions From FM Receivers	FN 55032:2015+A1:2020			N/A	
Conducted Emissions From The AC Mains Power Ports	EN 55032:2015+A1:	2020	Annex A.10	N/A	
Conducted Emissions From Asymmetric Mode	EN 55032:2015+A1:	2020	Annex A.12	N/A	
Conducted Differential Voltage Emissions	EN 55032:2015+A1:	2020	Annex A.13	N/A	
Harmonic current emissions	EN IEC 61000-3-2:2019-	+A1:2021	Section 7	N/A	
Voltage fluctuations & flicker	EN 61000-3-3:2013+A	1:2019	Section 5	N/A	
IN	MMUNITY (EN 55035:2017+	-A11:2020)			
Description of Test Item	Standard	Performance Criteria	e Observation Criteria	Results	
Electrostatic discharge (ESD)	IEC 61000-4-2:2008	В	A	Р	
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3:2006+ A1:2007 + A2:2010	А	А	Р	
Electrical fast transient (EFT)	IEC 61000-4-4:2012	В	N/A	N/A	
Surge (Input a.c. power port)	IEC 61000-4-5:2014+	В	N/A	N/A	
Surge(Telecommunication port)	A1:2017 B		N/A	N/A	
Radio-frequency, Continuous conducted disturbance	IEO 04000 4 0:0040	А	N/A	N/A	
Broadband impulsive conducted disturbances	- IEC 61000-4-6:2013	А	N/A	N/A	
Power frequency magnetic field	IEC 61000-4-8:2009	А	N/A	N/A	
Voltage dips, >95% reduction		В	N/A	N/A	
Voltage dips, 30% reduction	IEC 61000-4-11:2020	С	N/A	N/A	
Voltage interruptions, >95% reduction	- IEC 01000-4-11.2020	С	N/A	N/A	
Note: 1. P is an abbreviation fo	r Pass.				

Note:

- 1. P is an abbreviation for Pass.
- 2. F is an abbreviation for Fail.
- 3. N/A is an abbreviation for Not Applicable.
- 4. Decision rules for the conclusion of this test report: decision by actual test data without considering measurement uncertainty.

2.2. Test Mode Description

For Tests	For Tests					
Mode No.	Test Mode	Test Voltage				
Mode 1	Scanning	Power from PC				

2.3. Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

2.4. Measurement Uncertainty

Test Item	Uncertainty	Ucispr		
Uncertainty for Conduction emission test	1.63dB	3.8 dB		
Uncertainty for Radiation Emission test	3.74 dB (Distance: 3m Polarize: V)	50 10		
(<1G)	3.76 dB (Distance: 3m Polarize: H)	5.2 dB		
Uncertainty for Radiation Emission test (>1G)	3.77 dB (Distance: 3m Polarize: V)	5.2 dB		
Oncertainty for Nadiation Emission test (219)	3.80 dB (Distance: 3m Polarize: H)	J.2 UD		
(95% confidence levels, k=2)				

2.5. Test Equipment List

For Power Line Conducted Emission Test Equipment:

Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware	Last Cal.	Cal.Inte
	_qu.p			0011011101	version	2400 0411	rval
1.	Test Receiver	Rohde&Schwarz	ESCI	101165	4.42 SP1	2022.08.22	1 Year
2.	L.I.S.N.#1	Schwarz beck	NSLK8126	8126-466	/	2022.08.22	1 Year
3.	L.I.S.N.#2	Rohde&Schwarz	ENV216	101043	/	2022.08.22	1 Year
4.	Pulse Limiter	Schwarz beck	9516F	9618	/	2022.08.22	1 Year
5.	ISN	SCHWARZBECK	CAT5 8158	00316	/	2022.08.22	1 Year
6.	ISN	SCHWARZBECK	NTFM 8158	00273	/	2022.08.22	1 Year
7.	ISN	SCHWARZBECK	CAT3 8158	CAT3 8158	/	2022.08.22	1 Year
'	1514	OO! WY WEDEON	<i>5,</i> (15 6 166	#167	,	2022.00.22	i i cai

For Fi	For Frequency Range 30MHz~1GHz Radiated Emission Test Equipment:								
Item	Equipment Manufacturer Model No. Serial No.					Last Cal.	Cal.		
ItOIII	Equipment	Manadatate	Wodel No.	ocharito.	version	Last Gai.	Interval		
4	Toot Doooiyor	Dobdo & Cobyyorz	ESR	1316.3003K03	2.28 SP1	2022.08.22	1 Yea r		
1	Test Receiver	Rohde&Schwarz	ESK	-102082-Wa	2.20 371	2022.06.22	rrear		
	Dilan Antonia	Cabana na basala	\/ D 0460	VULB	,	0004 00 00	0. V = = =		
3	Bilog Antenna	Schwarz beck	VULB 9168	9168#627	/	2021.08.30	2 Year		

For Frequency Range above 1GHz Radiated Emission Test Equipment:								
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval	
		VEISIOII		IIILEIVAI				
1	Spectrum Analyzer	Rohde&Schwarz	FSU	200002	4.71.SP5	2022.08.22	1 Year	
2	Horn Antenna	Schwarz beck	BBHA 9120 D	02106	/	2022.08.22	2 Year	
3	Amplifier	Agilent	8449B	3008A02664	/	2022.08.22	1 Yea	

For H	For Harmonic Current Test & Voltage Fluctuations & Flicker Test Equipment:										
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval				
1.	Harmonics Flicker Analyser	Voltech	PM6000	20000670049 5	/	2022.08.22	1 Year				
2.	HARMINICS&FL ICKER MEASUREMEN T SYSTEM	EVERFINE	HFM300_V20 0	P630850TD14 11113	/	2022.03.30	1Year				

	For Electrostatic Discharge Test Equipment:											
Item Equipment Manufacturer Model No. Serial No. Firmware version Last Cal. Cal. Intervented												
	1. ESD Tester HAEFELY PESD1610 H310546 / 2022.08											

For R	F Field Strength	Susceptibility Test I	Equipment:				
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval
1.	vector Signal Generator	Agilent	E4438C	US44271917	1	2022.08.22	1 Year
2.	Power meter	Agilent	E4419B	GB40202122	/	2022.08.22	1 Year
3.	Power Sensor	Agilent	E9300A	MY41496625s	/	2022.08.22	1 Year
4.	RF power Amplifier	OPHIR	5225R	1045	/	2022.08.22	1 Year
5.	RF power Amplifier	OPHIR	5273R	1018	/	2022.08.22	1 Year
6	RF power Amplifier	Micotop	MPA-3000- 6000-100	MPA1811348	/	2022.08.22	1 Year
7.	Antenna	SCHWARZBECK	STLP9128E- special	STLP9128E s#139	/	N/A	NCR
8.	Antenna	SCHWARZBECK	STLP 9149	STLP 9149 #456	/	N/A	NCR

For Electrical Fast Transient/Burst Immunity, Surge, Power Frequency Magnetic Field Immunity, Voltage dips and interruptions test Equipment:

Item	Equipment	Manufacturer Model No.		Serial No.	Serial No. Firmware version		Cal. Interval
1.	Multifunctional Compact Immunity Test system	3ctest	CCS 600	ES0801655	CCS V4.0.9	2022.08.22	1 Year
2.	Surge & EFT Coupling Decoupling Network	3ctest	SEPN 3832T	ES0951601	/	2022.08.22	1 Year
3.	Voltage variation and PF magnetic field regulating device	3ctest	VMT2216S	ES0441601	/	2022.08.22	1 Year
4.	Capacitive Coupling Clamp	3ctest	CCC 100	EC0441660	/	2022.08.22	1 Year

For In	For Injected currents susceptibility test Equipment:											
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval					
1.	Conducted Immunity test System	SKET	_	SK201910100 1_CITS	/	2022.08.22	1 Year					
2.	Fixed Coaxial Attenuator (6dB Attenuation)	CD	ATT-0675	120540086	/	2022.08.22	1 Year					
3.	coupling- decoupling network (CDN)	CD	CDN M2/M3	2302	/	2022.08.22	1 Year					
4.	Electromagnetic Injection Clamp (EMC-Clamp)	CD	EM-Clamp	0513A031201	/	2022.08.22	1 Year					

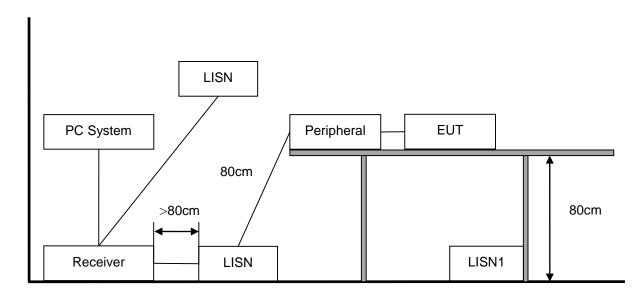
ForTest Software Information										
Item Software Name Manufacturer Version										
RE	EZ-EMC	Farad	Alpha-3A1							
CE	EZ-EMC	Farad	Alpha-3A1							

3. Conducted Emissions Test

3.1. Test Limit

Limit for Conducted Emissions at Mains Terminals Test

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	dB(μV)	dB(μV)				
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*				
500kHz ~ 5MHz	56	46				
5MHz ~ 30MHz	60	50				


Limit for Conducted Emissions From Asymmetric Mode Test

	Maximum RF Line Voltage					
Frequency	Quasi-Peak Level	Average Level				
	dB(μV)	dB(μV)				
150kHz ~ 500kHz	84 ~ 74	74 ~ 64				
500kHz ~ 30MHz	74	64				

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

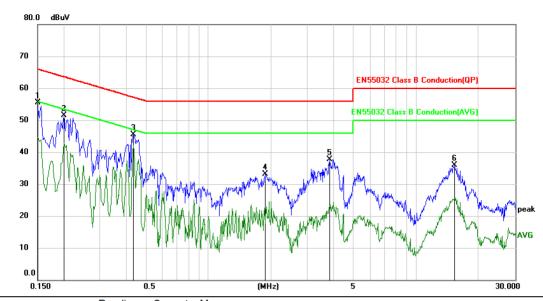
3.2. Block Diagram of Test Setup

3.3. Configuration of EUT on Test

The following equipment are installed on conducted disturbance at mains terminals to meet the EN 55032 requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

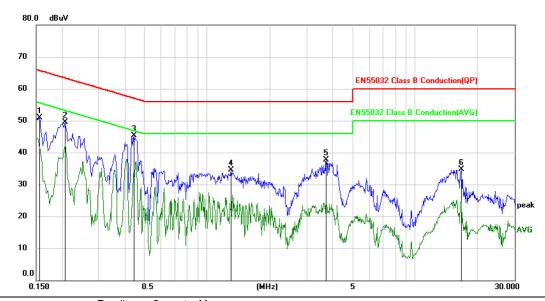

3.5. Test Procedure

- The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to EN 55032 on Conducted Disturbance at Mains Terminals test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.
- (3) The test results are reported on Section 3.6 & Section 3.7.

3.6. Conducted Emissions at Mains Terminals Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	2022.10.10							
M/N	:	RT218	Temperature	:	24 ℃							
Test Engineer	:	Ben Sun	Humidity	:	56%							
Test Voltage	:	Power from PC	Pressure	:	101.6kPa							
Test Mode	:	Scanning										
Test Results	:	PASS										
Note	:	1. The test results are listed in next pages.	The test results are listed in next pages.									
		2. If the limits for the measurement with the a	verage detector are	e r	net when using a							
		receiver with a peak detector, the test unit sha	all be deemed to m	nee	et both limits and							
		the measurement with the average detector a	nd quasi-peak det	ec	tor need not be							
		carried out.										
		3. If the limits for the measurement with the a	verage detector are	e r	net when using a							
		receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits										
		and the measurement with the average detector need not be carried out.										

Polarization: Line


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
		MHz	dBu∀	dB	dBu∀	dBu∨	dB	Detector	Comment
1	*	0.1500	45.65	9.94	55.59	66.00	-10.41	peak	
2		0.2010	41.52	9.92	51.44	63.57	-12.13	peak	
3		0.4350	35.61	9.95	45.56	57.16	-11.60	peak	
4		1.8810	23.29	9.88	33.17	56.00	-22.83	peak	
5		3.8340	27.80	9.96	37.76	56.00	-18.24	peak	
6		15.3270	25.53	10.34	35.87	60.00	-24.13	peak	

*:Maximum data x:Over limit !:over margin

Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Polarization: Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
		MHz	dBu∨	dB	dBu∀	dBuV	dB	Detector	Comment
1		0.1560	41.04	9.94	50.98	65.67	-14.69	peak	
2		0.2070	39.63	9.93	49.56	63.32	-13.76	peak	
3	*	0.4440	35.32	9.95	45.27	56.99	-11.72	peak	
4		1.2990	24.60	9.89	34.49	56.00	-21.51	peak	
5		3.7200	27.68	9.97	37.65	56.00	-18.35	peak	
6		16.6050	24.26	10.37	34.63	60.00	-25.37	peak	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

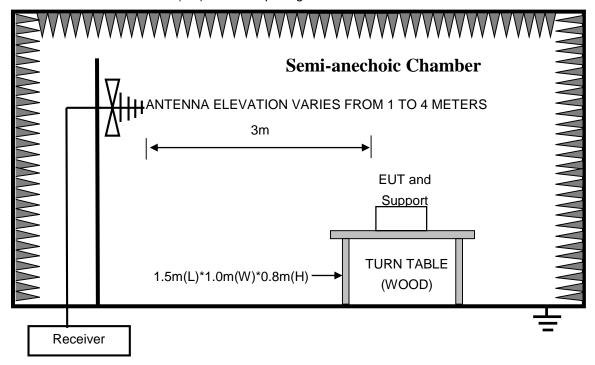
 $Note: Measurement = Reading\ Level + Correc\ Factor. \quad Factor = (LISN\ or\ ISN\ or\ PLC\ or\ Current\ Probe) Factor + Cable$

3.7. Conducted Emissions From Asymmetric Mode Test Results

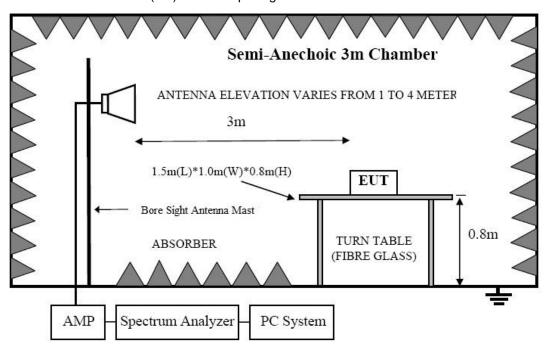
EUT	:	OEM BARCODE SCANNER	Test Date :		N/A				
M/N	:	RT218	Temperature :	:	N/A				
Test Engineer	:	N/A	Humidity :	:	N/A				
Test Voltage	:	N/A	Pressure :		N/A				
Test Mode	:	N/A							
Test Results	:	N/A							
Note	Note : No have Asymmetric Mode Port, This item does not applicable.								

4. Radiated Emissions Test

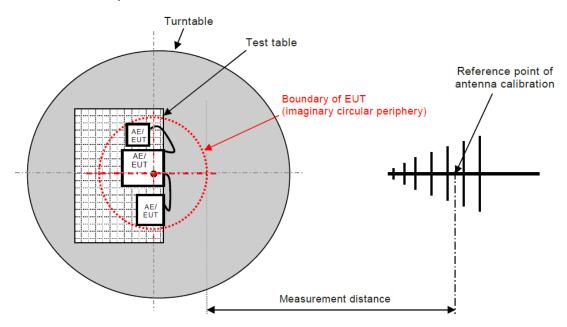
4.1. Test Limit


Fr	eque MHz	•	Distance (Meters)	Field Strengths Limits dB(μV)/m
30	۲	230	3	40
230	۲	1000	3	47
1000	~	3000	3	70(Peak) 50(Average)
3000	~	6000	3	74(Peak) 54(Average)

Notes:


- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 4. Frequency range of radiated measurements:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower.


In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

For 3m distance description:

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the EN 55032 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

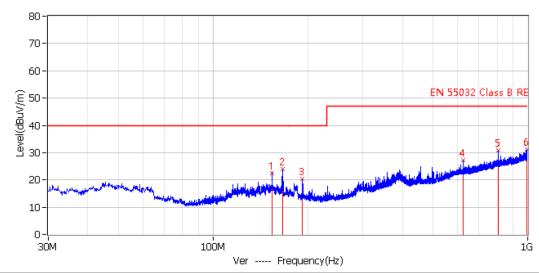
4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.5. Test Procedure

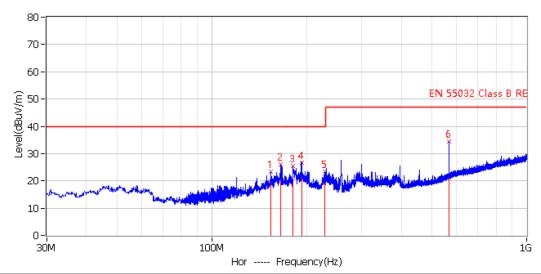
- The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all the interface cables were changed according to EN 55032 on Radiated Disturbance test.
- The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (3) The resolution bandwidth of the R&S Spectrum Analyzer FSU was set at 1MHz. (For above 1GHz)
- (4) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, all measurement distance

is 3m in 3m semi anechoic chamber.


- (5) The frequency range from 1GHz to 6GHz was checked with peak and average detector, measurement distance is 3m in 3m chamber.
- (6) The test results are reported on Section 4.6.

For below 1G radiated disturbance test result:									
EUT	: OEM BARCODE SCANNER	Test Date : 2022.10.9							
M/N	: RT218	Temperature : 24℃							
Test Engineer	: Ben Sun	Humidity : 56%							
Test Voltage	: Power from PC	Pressure : 101.6kPa							
Test Mode	: Scanning								
Test Results	: PASS								

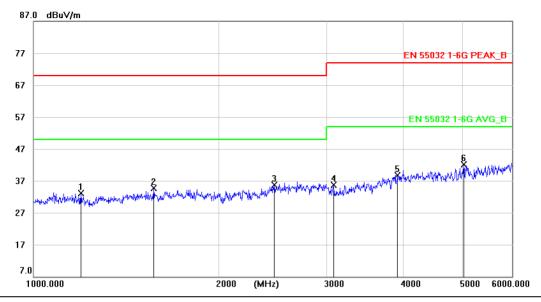
Note: 1. The test results are listed in next pages.


2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet limits and the measurement with the quasi-peak detector need not be carried out.

Antenna Polarity: Vertical

No.	Frequency	Level	Factor	Limit	Margin	Detector	Height	Height	Angle
INO.	rrequericy	dBuV/m	dB/m	dBuV/m	dB	Detector	cm	cm	deg
1*	154.039MHz	22.6	16.0	40.0	-17.4	PK	Ver	100.0	139.0
2*	166.406MHz	24.0	15.8	40.0	-16.0	PK	Ver	100.0	290.0
3*	192.718MHz	20.4	12.8	40.0	-19.6	PK	Ver	100.0	318.0
4*	624.731MHz	27.3	23.0	47.0	-19.7	PK	Ver	100.0	337.0
5*	806.728MHz	30.8	25.6	47.0	-16.2	PK	Ver	100.0	111.0
6*	994.059MHz	31.3	27.4	47.0	-15.7	PK	Ver	100.0	0.0

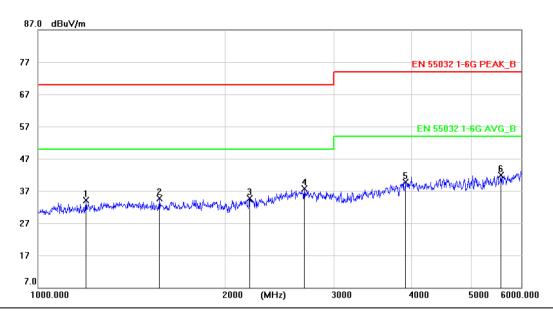
Antenna Polarity: Horizontal



No.	Frequency	Level	Factor	Limit	Margin	Detector	Height	Height	Angle
INO.	rrequericy	dBuV/m	dB/m	dBuV/m	dB	Detector	cm	cm	deg
1*	154.281MHz	23.3	16.0	40.0	-16.7	PK	Hor	200.0	228.0
2*	165.921MHz	26.0	15.8	40.0	-14.0	PK	Hor	200.0	296.0
3*	181.320MHz	25.4	14.1	40.0	-14.6	PK	Hor	200.0	242.0
4*	192.960MHz	26.8	12.8	40.0	-13.2	PK	Hor	200.0	228.0
5*	229.335MHz	23.5	12.5	40.0	-16.5	PK	Hor	100.0	164.0
6*	565.804MHz	34.4	21.7	47.0	-12.6	PK	Hor	100.0	228.0

For above 1G radiated emissions test result:

EUT	:	OEM BARCODE SCANNER	Test Date	: 2022.10.9		
M/N	:	RT218	Temperature	: 24 ℃		
Test Er	ngineer :	Ben Sun	Humidity	: 56%		
Test Vo	oltage :	Power from PC	Pressure	: 101.6kPa		
Test M	ode :	Scanning				
Test Re	esults :	PASS				
Note:	1. The test resu	Its are listed in next pages.				
	2. If the limits for the measurement with the average detector are met when using a receiver with					
	a peak detector	, the test unit shall be deemed to meet lim	its and the measure	ement with the		
	average detector	or need not be carried out.				


Antenna Polarity: Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		1195.160	51.89	-18.71	33.18	70.00	-36.82	peak			
2		1569.015	51.91	-17.13	34.78	70.00	-35.22	peak			
3		2466.666	49.00	-13.28	35.72	70.00	-34.28	peak			
4		3077.416	47.45	-11.83	35.62	74.00	-38.38	peak			
5		3912.770	52.67	-13.87	38.80	74.00	-35.20	peak			
6	*	5007.073	54.20	-12.08	42.12	74.00	-31.88	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

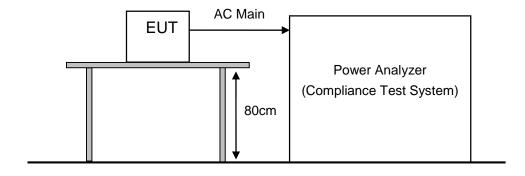
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		1195.160	52.89	-18.71	34.18	70.00	-35.82	peak			
2		1569.015	51.91	-17.13	34.78	70.00	-35.22	peak			
3		2193.782	49.27	-14.65	34.62	70.00	-35.38	peak			
4		2685.472	50.65	-12.93	37.72	70.00	-32.28	peak			
5		3912.770	53.67	-13.87	39.80	74.00	-34.20	peak			
6	*	5570.036	52.50	-10.53	41.97	74.00	-32.03	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

5. Harmonic Current Test

5.1. Test Limit


For Class A equipment:

Harmonic order	Maximum permissible harmonic current
n	A
Odd h	armonics
3	2,30
5	1,14
7	0,77
9	0,40
11	0,33
13	0,21
$15 \le n \le 39$	0,15 ¹⁵ / _n
Even h	narmonics
2	1,08
4	0,43
6	0,30
$8 \le n \le 40$	0,23 8 n

for Class A equipment:

The harmonics of the input current shall not exceed the values given in Class A equipment limit multiplied by a factor of 1,5.

5.2. Block Diagram of Test Setup

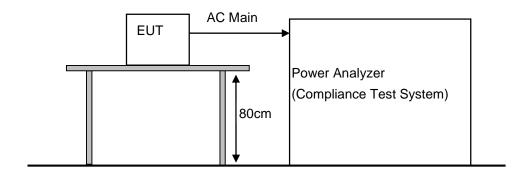
5.3. Configuration of EUT on Test

The following equipment are installed on Harmonic Current Test to meet the EN IEC 61000-3-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

5.5. Test Procedure


- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.
- (2) The test results are reported on Section 5.6.

5.6. Harmonic Current Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	N/A
M/N	:	RT218,RT218A	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	1. Not applicable for equipment operated with PC,	battery, or Powe	r Su	pply.

6. Voltage Fluctuations & Flicker Test

6.1. Block Diagram Of Test Setup

6.2. Test Standard

EN 61000-3-3:2013+A1:2019

6.3. Voltage Fluctuation And Flicker Test Limits

Test Item	Limit	Note			
P _{st}	P _{st} 1.0 P _{st} means Short-term flicker indicator				
P _{lt}	P _{lt} 0.65 P _{lt} means long-term flicker indicator				
$T_{ m dt}$	0.2	T _{dt} means maximum time that dt exceeds 3%			
d _{max} (%)	d _{max} (%) 4% d _{max} means maximum relative voltage				
d _c (%)	d _c means relative steady-state voltage change.				

6.4. Configuration Of EUT On Test

The following equipment are installed on Harmonic Current Test to meet the EN 61000-3-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

6.5. Operating Condition Of EUT

- (1) Setup the EUT as shown as Section 6.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

6.6. Test Procedure

- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions During the flick measurement; the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.
- (2) The test results are reported on Section 6.7.

6.7. Voltage Fluctuation And Flicker Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	N/A
M/N	:	RT218,RT218A	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	1. Not applicable for equipment operated with PC,	battery, or Powe	r Su	pply.

7. Immunity General performance criteria

Performance Level

When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

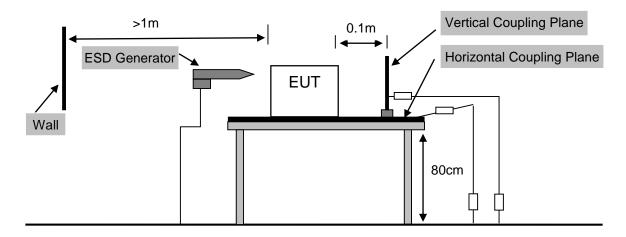
After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.


8. Electrostatic Discharge Test

8.1. Electrostatic Discharge Test Limits

Test Type	Test Level	Performance Criterion
Air Discharge	8KV	В
Contact Discharge	4KV	В

Notes: 1. Test set-up reference IEC 61000-4-2:2008

8.2. Block Diagram of Test Setup

8.3. Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 8.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

8.5. Test Procedure

(1) Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times (10 with positive and 10 negative with positive) for each pre-selected test point. This procedure was repeated until all the air discharge completed.

(2) Contact Discharge:

All the procedure was same as Section 8.5(1). Except that for the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.

(3) Indirect discharge for horizontal coupling plane:

At least 20 single discharges (10 with positive and 10 negative with positive) were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

(4) Indirect discharge for vertical coupling plane:

At least 20 single discharge (10 with positive and 10 negative with positive) were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.6. Electrostatic Discharge Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	2022.10.10
M/N	:	RT218,RT218A	Temperature	:	24 ℃
Test Engineer	:	Ben Sun	Humidity	:	56 %
Test Voltage		Power from PC	Pressure	:	101.6kPa

Test Mode : Scanning

Test Results : PASS

CSCIN	coulto .	1 700					
Dis	scharge	Type Of Discharge	Dieck	pargoable F	Points	Perfo	rmance
Volt	tage (kV)	Type Of Discharge	Disci	Dischargeable Points -		Required	Observation
	±2	Contact		N/A		В	N/A
	±4	Contact		N/A		В	N/A
	±2	Air		N/A		В	N/A
	±4	Air		N/A		В	N/A
	±8	3 Air		N/A		В	N/A
	±4	HCP-Bottom	Edge of the HCP		СР	В	А
	±4	VCP-Front	Center of the VCP		/CP	В	A
	±4	VCP-Left	Cer	nter of the V	/CP	В	А
	±4	VCP-Back	Cer	nter of the V	/CP	В	А
	±4 VCP-Right (Center of the VCP		В	А	
		Discha	arge Poir	nts Descript	ion		
1	Metal She	ell		5.	/		
2	2 Metal Screw			6.	/		
3	/			7	1		

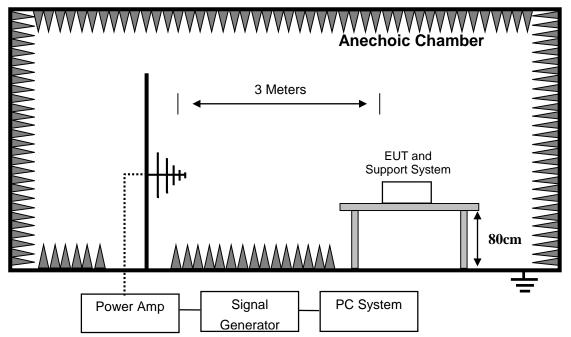
4. Note:

1. For the time interval between successive single discharges an initial value of one second.

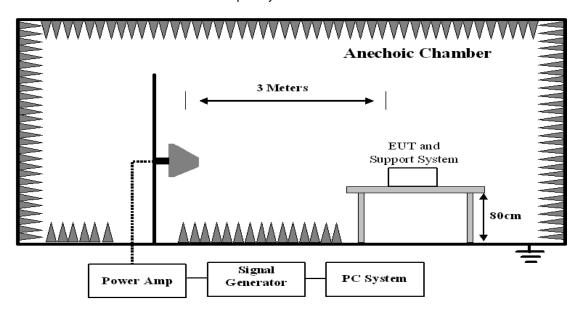
8.

- 2. For Air Discharge each Point Positive 10 times and negative 10 times discharge.
- 3. A is a bare part, It shall be installed inside the product when it is used normally, do not need to test air discharge and contact discharge.
- 4. Class A is no function loss.

9. RF Field Strength Susceptibility Test


9.1. Test Level

Test Specifications	Test Level	Performance Criterion
80MHz-1000MHz		A
1800(±1%)MHz		A
2600(±1%)MHz	3V/m (r.m.s.)	A
3500(±1%)MHz		A
5000(±1%)MHz		A


Notes: 1. Test set-up reference IEC 61000-4-3:2006 + A1:2007 + A2:2010

9.2. Block Diagram of Test Setup

For frequency from 80MHz to 1000MHz

For frequency above 1000MHz

9.3. Configuration of EUT on Test

The following equipment are installed on RF Field Strength Susceptibility Test to meet the IEC 61000-4-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 9.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

9.5. Test Procedure

(3)

- Testing was performed in a Fully anechoic chamber as recommended by IEC 61000-4-3.
 The EUT was placed on an 80 cm high non-conductive table located in the area of field
- uniformity. The radiating antenna was placed 3m in front of the EUT and Support system, and dwell time of the radiated interference was controlled by an automated, computer-controlled system.
 - The signal source was stepped through the applicable frequency range at a rate no faster than 1% of the fundamental. The signal was amplitude modulated 80% over the frequency range 80 MHz to 1GHz at a level of 3 V/m. The dwell time was set at 1 s. Field presence was monitored
- Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization.

during testing via a field probe placed in close proximity to the EUT.

9.6.RF Field Strength Susceptibility Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	2022.10.10
M/N	:	RT218,RT218A	Temperature	:	24 ℃
Test Engineer	:	Ben Sun	Humidity	:	56%
Test Voltage		Power from PC	Pressure	:	101.6kPa
Test Mode	:	Scanning			
Test Results	:	PASS			
Note	:	The test results are listed in next pages			

Page 43 of 65 Report No.: A2209257-C01-R01

		- 3					
Modulation:		☑ AM □] Pulse	□ none 1 kH	z 80%		
Frequency Range		80 MHz -1000MHz					
Field strength		3V/m					
Steps			1%				
	Hor	izontal	Vertical		Result		
	Required	Observation	Required	Observation	(Pass / Fail)		
Front	А	Α	Α	А	Pass		
Right	Α	Α	Α	Α	Pass		
Rear	Α	Α	Α	Α	Pass		
Left	Α	А	А	Α	Pass		
Remark: Class A is no function loss							

Modulat	ion:	☑ AM □] Pulse	□ none 1 kHz	z 80%		
Frequency Range		1800(±1%) MHz					
Field strength		3V/m					
Steps		spot test					
	Hor	Horizontal		rtical	Result		
	Required	Observation	Required	Observation	(Pass / Fail)		
Front	А	А	А	А	Pass		
Right	А	А	А	А	Pass		
Rear	А	А	А	А	Pass		
Left	А	Α	А	А	Pass		
Remark: Class A is no function loss							

Modulat	ion:	☑ AM □] Pulse	□ none 1 kHz	z 80%	
Frequency Range		2600(±1%) MHz				
Field strength		3V/m				
Steps		spot test				
	Hor	Horizontal		rtical	Result	
	Required	Observation	Required	Observation	(Pass / Fail)	
Front	Α	А	А	А	Pass	
Right	Α	А	А	А	Pass	
Rear	Α	А	А	А	Pass	
Left	A A A A				Pass	
Remark: Class A is no function loss						

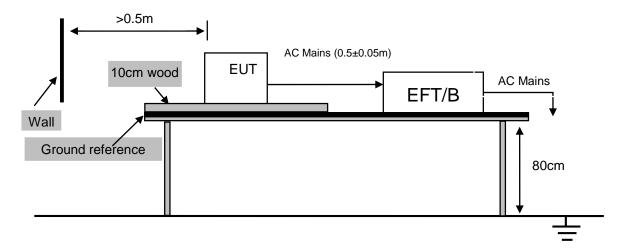
Page 44 of 65 Report No.: A2209257-C01-R01

Modulat	ion:	☑ AM [☐ Pulse	□ none 1 kHz	2 80%		
Frequency Range		3500(±1%) MHz					
Field strength		3V/m					
Steps	spot test						
	Hor	izontal	Ve	rtical	Result		
	Required	Observation	Required	Observation	(Pass / Fail)		
Front	А	Α	Α	A	Pass		
Right	А	Α	Α	A	Pass		
Rear	А	Α	Α	А	Pass		
Left	А	А	А	А	Pass		
Remark: Class A is no function loss							

Modulat	ion:	☑ AM □	☐ Pulse	□ none 1 kH	z 80%		
Frequency Range		5000(±1%) MHz					
Field strength		3V/m					
Steps		spot test					
	Horizontal		Vertical		Result		
	Required	Observation	Required	Observation	(Pass / Fail)		
Front	А	А	А	А	Pass		
Right	А	Α	А	А	Pass		
Rear	А	Α	А	А	Pass		
Left	А	Α	А	Α	Pass		
Remark: Class A is no function loss							

Report No.: A2209257-C01-R01

10. Electrical Fast Transient/Burst Immunity Test


10.1.Test Level

For AC mains power ports					
Test Specifications	Test Level	Performance Criterion			
Tr/Th Repetition: 5/50ns Frequency: 5kHz	1KV	В			
For DC netv	vork power ports and analog	ue/digital data ports			
Test Specifications	Test Level	Performance Criterion			
Tr/Th Repetition: 5/50ns Frequency: 5kHz	0.5KV	В			

Notes:

1. Test set-up reference IEC 61000-4-4:2012

10.2.Block Diagram of Test Setup

10.3. Configuration of EUT on Test

The following equipment are installed on Electrical Fast Transient/Burst immunity Test to meet the IEC 61000-4-4 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 10.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

10.5.Test Procedure

The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support 0.1m + 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project beyond the EUT by at

(1) least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.

10.6.1. For input and AC power ports:

The EUT was connected to the power mains by using a coupling device that couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 1min.

10.6.2. For signal lines and control lines ports:

It's unnecessary to test.

10.6.3. For DC input and DC output power ports:

It's unnecessary to test.

10.6. Electrical Fast Transient/Burst Immunity Test Results

EUT	:	OEM BARCODE SCANNER	Test Date : N/A		
M/N	:	RT218,RT218A	Temperature : N/A		
Test Engineer	:	N/A	Humidity : N/A		
Test Voltage	:	N/A	Pressure : N/A		
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	Not applicable for equipment operated with PC, battery, or Power Supply.			

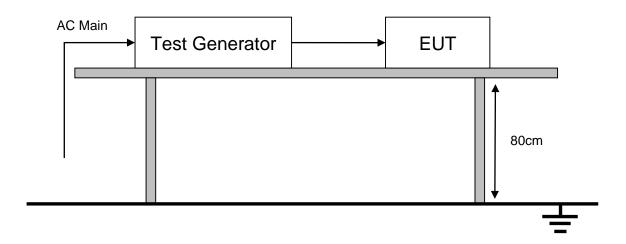
11. Surge Test

11.1.Test Level

For AC mains power ports

1 of 7to mains power ports						
Test Specifications	Test Level	Performance Criterion				
Tr/Th Repetition: 1,2/50 (8/20)ns	1 KV	В				
Between line and line	1111					
Tr/Th Repetition: 1,2/50 (8/20)ns	2 KV	В				
Between line and earth (ground)	21(1					
For [For DC network power ports					
Test Specifications	Test Level	Performance Criterion				
Tr/Th Repetition: 1,2/50 (8/20)ns						
Line to reference ground for each individual	0.5 KV	В				
line						
For ar	nalogue/digital data ports					
·						
Test Specifications	Test Level	Performance Criterion				
Test Specifications Tr/Th Repetition: 10/700 (5/320)ns	Test Level	Performance Criterion				
·						
Tr/Th Repetition: 10/700 (5/320)ns	Test Level 1 KV/4KV ^{a b}	Performance Criterion C				
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical:						
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground						
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is intended						
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is intended Tr/Th Repetition: 10/700 (5/320)ns						
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is intended Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical:	1 KV/4KV ^{a b}	С				
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is intended Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground	1 KV/4KV ^{a b}	С				
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is intended Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is not	1 KV/4KV ^{a b}	С				

Notes:


shield to ground

- 1. Test set-up reference IEC 61000-4-5:2014+A1:2017
- 2. ^a is surges are applied with primary protection fitted. Where possible, use the actual primary protector intended to be used in the installation.
- 3. $^{\rm b}$ is Where the surge coupling network for the 10/700 (5/320) μ s waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20) μ s waveform and appropriate coupling network.
- 4. a is Surges are applicable to ports which satisfy all the following conditions:
- may connect directly to cables that leave the building structure,
- defined as an antenna port, a wired network port, or a broadcast receiver tuner port see the standard EN 55035 section 3.

Typical ports covered include xDSL, PSTN, CATV, antenna and similar. Excluded ports are LAN and similar.

Report No.: A2209257-C01-R01

11.2.Block Diagram of Test Setup

11.3. Configuration of EUT on Test

The following equipment are installed on Surge Test to meet the IEC 61000-4-5 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 11.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

11.5.Test Procedure

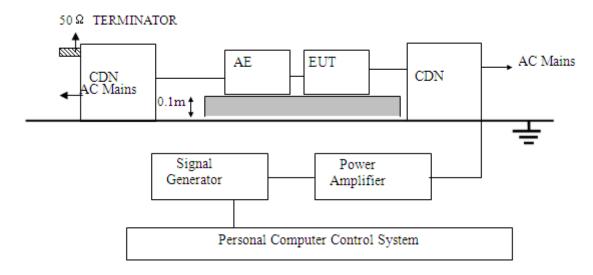
For line-to-line coupling mode, provide a 1kV 1.2/50us voltage surge (at open-circuit condition)

- (1) and 8/20us current surge to EUT selected points, and for active line / neutral lines to ground are same except test level is 2kV.
- (2) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are applied during test.
- (3) Different phase angles are done individually.
- (4) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.6.Surge Test Results

EUT	: OEM BARCODE SCANNER	Test Date : N/A
M/N	: RT218,RT218A	Temperature : N/A
Test Engineer	: N/A	Humidity : N/A
Test Voltage	: N/A	Pressure : N/A
Test Mode	: N/A	
Test Results	: N/A	
Note	: Not applicable for equipment operate	ed with PC, battery, or Power Supply.

12. Injected Currents Susceptibility Test


12.1.Test Level

Test Specifications	Test Level	Performance Criterion
0,15 to 10MHz	3 V	
10 to 30MHz	3 to 1 V	A
30 to 80MHz	1 V	

Notes:

1. Test set-up reference IEC 61000-4-6:2013

12.2.Block Diagram of Test Setup

12.3. Configuration of EUT on Test

The following equipment are installed on Injected currents susceptibility Test to meet the IEC 61000-4-6 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

12.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 12.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

Report No.: A2209257-C01-R01

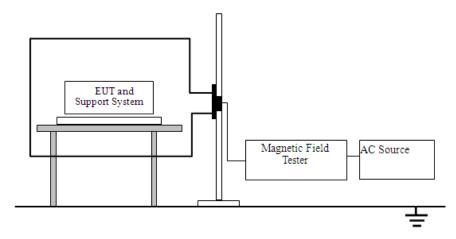
12.5.Test Procedure

- (1) Let the EUT work in test mode and test it.
 - The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN
- (2) (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 10 and 30 mm (where possible).
- (3) The disturbance signal described below is injected to EUT through CDN.
- (4) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- (5) The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- (6) The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- (7) Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.6.Injected Currents Susceptibility Test Results

EUT	: OEM BARCODE SCANNER	Test Date : N/A	
M/N	: RT218,RT218A	Temperature : N/A	
Test Engineer	: N/A	Humidity : N/A	
Test Voltage	: N/A	Pressure : N/A	
Test Mode	: N/A		
Test Results	: N/A		
Note	: Not applicable for equipment operated with PC, battery, or Power Supply.		

13. Magnetic Field Immunity Test


13.1.Test Level

Test Specifications	Test Level	Performance Criterion		
50 or 60 Hz	1 A/m	А		

Notes:

- 1. Test set-up reference IEC 61000-4-8:2009
- 2. This test applicable only to equipment containing devices intrinsically susceptible to magnetic fields, such as CRT monitors, Hall effect elements, electro-dynamic microphones, magnetic field sensors or audio frequency transformers. Refer to D.3.2 for determining the test level when the EUT contains a CRT display.

13.2.Block Diagram of Test Setup

13.3. Configuration of EUT on Test

The following equipment are installed on Magnetic field immunity Test to meet the IEC 61000-4-8 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

13.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 13.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

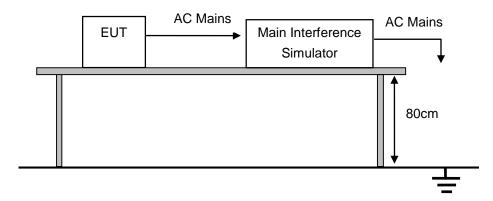
13.5.Test Procedure

The EUT was subjected to the test magnetic field by using the induction coil of standard dimensions

(1) (1m*1m) and shown in Section 13.2. The induction coil was then rotated by 90°in order to expose the EUT to the test field with different orientations.

13.6.Magnetic Field Immunity Test Results

EUT	:	OEM BARCODE SCANNER	Test Date : N/A		
M/N	:	RT218,RT218A	Temperature : N/A		
Test Engineer	:	N/A	Humidity : N/A		
Test Voltage	:	N/A	Pressure : N/A		
Test Mode	:	N/A			
Test Results	:	N/A			
	The EUT not containing devices susceptible to magnetic fields, and Power-frequency				
Note	:	magnetic field test applicable only to EUT containing devices susceptible to magnetic			
		fields, so the test not applicable.			


14. Voltage Dips And Interruptions Test

14.1.Test Level

Test Level %UT	Voltage dip and short interruptions %UT	Performance Criterion	Duration (in period)
< 5	100	С	250
< 5	100	В	0.5
70	30	С	25

Notes: 1. Test set-up reference IEC 61000-4-11:2020

14.2.Block Diagram of Test Setup

14.3. Configuration of EUT on Test

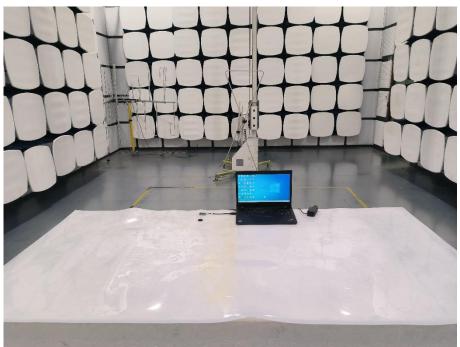
The following equipment are installed on Voltage dips and interruptions Test to meet the IEC 61000-4-11 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

14.4. Operating Condition of EUT

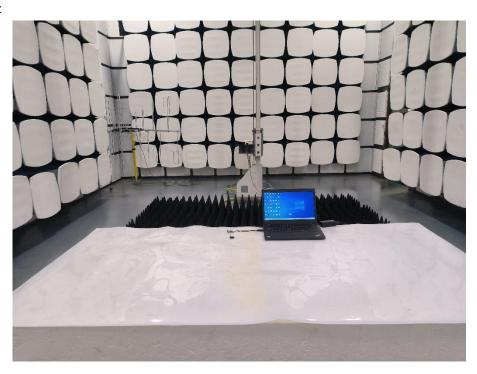
- (1) Setup the EUT as shown as Section 14.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

14.5.Test Procedure

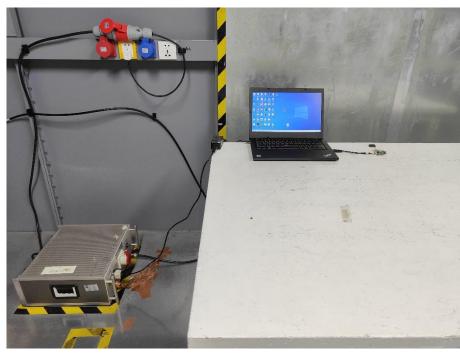
- (1) The interruption is introduced at selected phase angles with specified duration.
- (2) Record any degradation of performance.


14.6. Voltage Dips And Interruptions Test Results

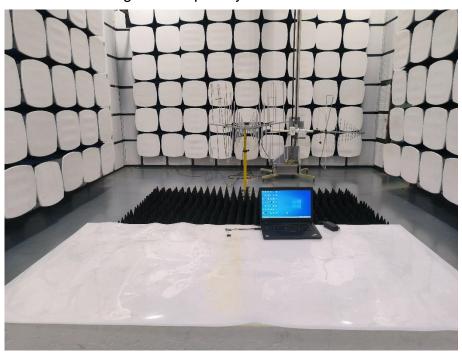
EUT	:	OEM BARCODE SCANNER	Test Date	:	N/A
M/N	:	RT218,RT218A	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	Not applicable for equipment operated with PC, battery, or Power Supply.			


15. Photograph

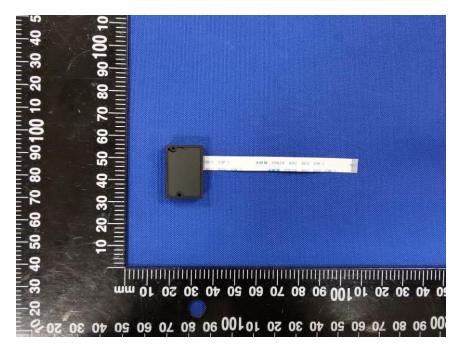
15.1.Photo Of Radiated Emissions Test (In Semi Anechoic Chamber)


30MHz~1GHz

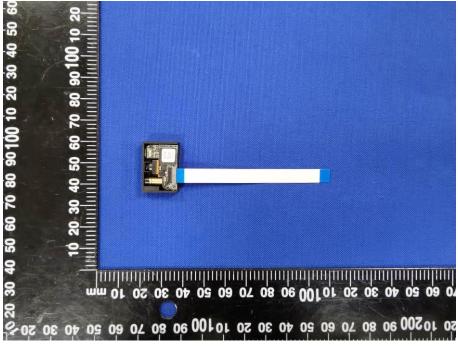
Above 1GHz

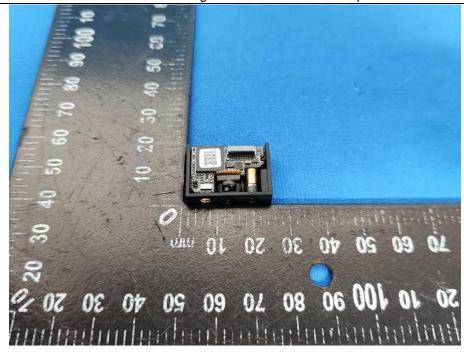


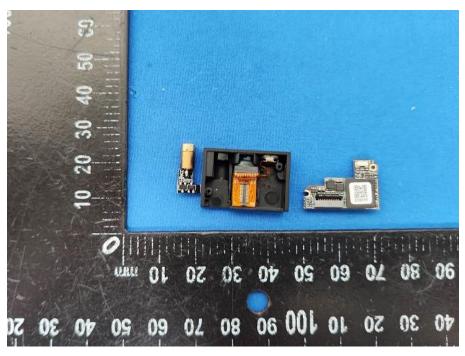
15.2.Photo of Conducted Emissions From Asymmetric Mode Test

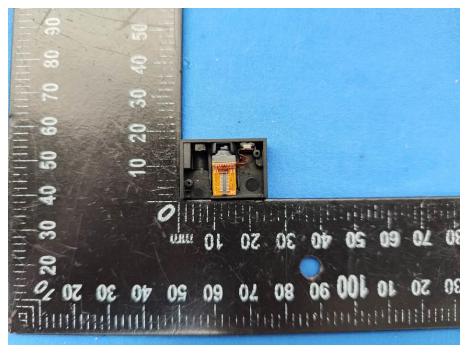


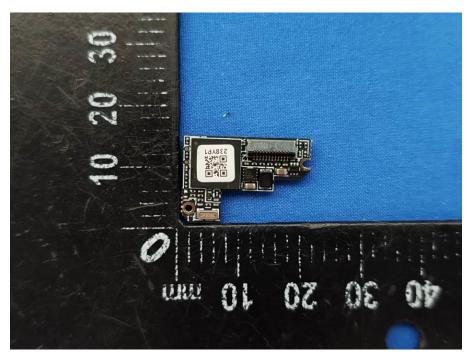
15.3.Photo of Electrostatic Discharge Test



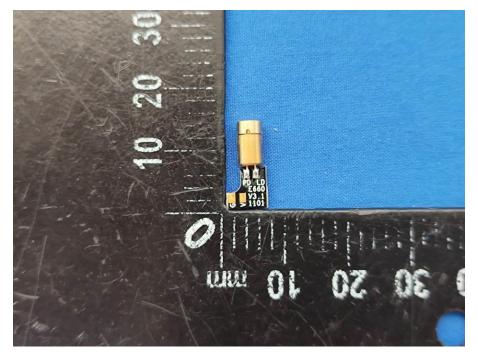

16. Photos Of The EUT

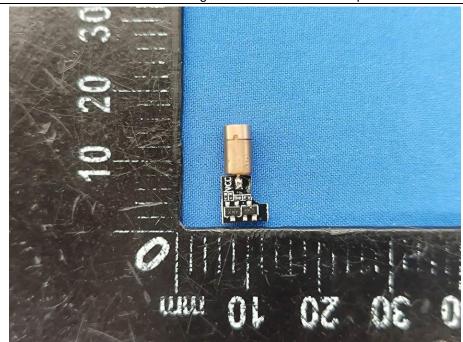

EUT View


EUT View


EUT View

EUT View


EUT View


EUT View

EUT View

EUT View

EUT View

----END OF REPORT----