

APPLICATION FOR ELECTROMAGNETIC COMPATIBILITY DIRECTIVE

On Behalf of

RTSCAN TECHNOLOGY LIMITED

OEM BARCODE SCANNER

Model No.: RT830D

Prepared for	: RTSCAN TECHNOLOGY LIMITED
Address	553-555, Dongming Building, Minzhi Street, Longhua District, Shenzhen 518109, China
Prepared By	: Shenzhen Alpha Product Testing Co., Ltd.
Address	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China
	Report Number : A2303105-C02-R01
	Date of Receipt : May 4, 2023
	Date of Test : May 5, 2023
	Date of Report : May 6, 2023
	Version Number : V0

ALPHA's reports is using a digital certificate that is trusted on Adobe's official server. If there is no digital certificate or the digital certificate shows damaged in your report. Please do not accept the report. E-mail: service@a-lab.cn Tel: 4008-3008-95 Website: http://www.a-lab.cn

TABLE OF CONTENTS

Description

Page

1. General	Information	7
1.1.	Description of Device (EUT)	7
1.2.	Accessories of Device (EUT)	7
1.3.	Tested Supporting System Details	8
1.4.	Block Diagram of connection between EUT and simulators	8
	ry Of Standards And Results	
	Description of Standards and Results	
2.2.	Test Mode Description	10
2.3.	Test Facility	10
2.4.	Measurement Uncertainty	10
2.5.	Test Equipment List	11
3. Conduc	ted Emissions Test	14
3.1.	Test Limit	14
3.2.	Block Diagram of Test Setup	14
3.3.	Configuration of EUT on Test	15
3.4.	Operating Condition of EUT	15
3.5.	Test Procedure	15
3.6.	Conducted Emissions at Mains Terminals Test Results	16
4. Radiate	d Emissions Test	17
4.1.	Test Limit	17
4.2.	Block Diagram of Test Setup	18
4.3.	Configuration of EUT on Test	19
4.4.	Operating Condition of EUT	19
4.5.	Test Procedure	19
4.6.	Radiated Emissions Test Results	21
5. Harmon	ic Current Test	27
5.1.	Test Limit	27
5.2.	Block Diagram of Test Setup	27
5.3.	Configuration of EUT on Test	28
5.4.	Operating Condition of EUT	28
5.5.	Test Procedure	28
5.6.	Harmonic Current Test Results	29
6. Voltage	Fluctuations & Flicker Test	30
6.1.	Block Diagram Of Test Setup	30
6.2.	Test Standard	30
6.3.	Voltage Fluctuation And Flicker Test Limits	30
6.4.	Configuration Of EUT On Test	31
6.5.	Operating Condition Of EUT	31
6.6.	Test Procedure	31
6.7.	Voltage Fluctuation And Flicker Test Results	32
7. Immunit	y General performance criteria	33

8.E	lectrostatic Discharge Test	
	8.1. Electrostatic Discharge Test Limits	34
	8.2. Block Diagram of Test Setup	34
	8.3. Configuration of EUT on Test	34
	8.4. Operating Condition of EUT	34
	8.5. Test Procedure	34
	8.6. Electrostatic Discharge Test Results	36
9. R	F Field Strength Susceptibility Test	37
	9.1. Test Level	37
	9.2. Block Diagram of Test Setup	37
	9.3. Configuration of EUT on Test	38
	9.4. Operating Condition of EUT	38
	9.5. Test Procedure	38
	9.6. RF Field Strength Susceptibility Test Results	39
10.	Electrical Fast Transient/Burst Immunity Test	42
	10.1. Test Level	42
	10.2. Block Diagram of Test Setup	42
	10.3. Configuration of EUT on Test	42
	10.4. Operating Condition of EUT	42
	10.5. Test Procedure	43
	10.6. Electrical Fast Transient/Burst Immunity Test Results	44
11.	Surge Test	45
	11.1. Test Level	45
	11.2. Block Diagram of Test Setup	46
	11.3. Configuration of EUT on Test	46
	11.4. Operating Condition of EUT	46
	11.5. Test Procedure	46
	11.6. Surge Test Results	47
12.	Injected Currents Susceptibility Test	48
	12.1. Test Level	48
	12.2. Block Diagram of Test Setup	48
	12.3. Configuration of EUT on Test	48
	12.4. Operating Condition of EUT	48
	12.5. Test Procedure	49
	12.6. Injected Currents Susceptibility Test Results	50
13.	Magnetic Field Immunity Test	51
	13.1. Test Level	51
	13.2. Block Diagram of Test Setup	51
	13.3. Configuration of EUT on Test	51
	13.4. Operating Condition of EUT	51
	13.5. Test Procedure	51
	13.6. Magnetic Field Immunity Test Results	52
14.	Voltage Dips And Interruptions Test	53
	14.1. Test Level	53
	14.2. Block Diagram of Test Setup	53

16.	Photos Of The EUT	57
	15.3. Photo of RF Field Strength Susceptibility Test	56
	15.2. Photo of Electrostatic Discharge Test	56
	15.1. Photo Of Radiated Emissions Test (In Semi Anechoic Chamber)	55
15.	Photograph	55
	14.6. Voltage Dips And Interruptions Test Results	
	14.5. Test Procedure	53
	14.4. Operating Condition of EUT	53
	14.3. Configuration of EUT on Test	53

Applicant	: RTSCAN TECHNOLOGY LIMITED
Address	553-555, Dongming Building, Minzhi Street, Longhua District, Shenzhen 518109, China
Manufacturer	: RTSCAN TECHNOLOGY LIMITED
Address	553-555, Dongming Building, Minzhi Street, Longhua District, Shenzhen 518109, China
EUT Description	: OEM BARCODE SCANNER
(A)	Model No. : RT830D
(B)	Trademark :

L RTscan

TEST REPORT DECLARATION

Measurement Standard Used:

EN 55032:2015+A1:2020

EN 55035:2017+A11:2020

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the EN 55032 and EN 55035 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Jerry Yin Project Engineer	Jerry En PRODUCT
Approved by (name + signature):	Reak Yang Project Manager	ALPHA ALPHA ALPHA PRODUCT TESTING ****
Date of issue	May 6, 2023	

Revision History

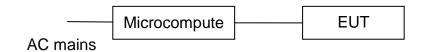
Revision	Issue Date	Revisions	Revised By
V0	May 6, 2023	Initial released Issue	Jerry Yin

1. General Information

1.1. Description of Device (EUT)					
Description	:	OEM BARCODE SCANNER			
Model Number		PT830D			
	-				
Diff	:	/			
Test Voltage	:	DC 5V From PC			
EUT information	:	Input : DC 5V			
Highest frequency	:	More than 108MHz			
		_			
Trademark	:	RTscan			
Software version		NI/A			

Software version:N/AHardware version:N/A

1.2. Accessories of Device (EUT)


Power Source : /

1.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number
1	Microcomputer	Lenovo	ThinkPad L14 Gan 1	SL10Z47398

1.4. Block Diagram of connection between EUT and simulators

For test

	Signal Cable Description of the above Support Units					
No.	Port Name	Cable Length		Detachable (Yes or No)		
(a)	/	/	/	/	/	

2. Summary Of Standards And Results

2.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION						
Description of Test Item	Standard		Limits	Results		
Radiated Emissions	EN 55032:2015+A1:	2020	Annex A.4 & A.5	Р		
Radiated Emissions From FM Receivers	EN 55032:2015+A1:	2020	Annex A.6	N/A		
Conducted Emissions From The AC Mains Power Ports	EN 55032:2015+A1:	2020	Annex A.10	N/A		
Conducted Emissions From Asymmetric Mode	EN 55032:2015+A1:	2020	Annex A.12	N/A		
Conducted Differential Voltage Emissions	EN 55032:2015+A1:	2020	Annex A.13	N/A		
IN	1MUNITY (EN 55035:2017+	-A11:2020)				
Description of Test Item	Standard	Performanc Criteria	e Observation Criteria	Results		
Electrostatic discharge (ESD)	IEC 61000-4-2:2008	В	A	Р		
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3:2006+ A1:2007 + A2:2010	A		Р		
Electrical fast transient (EFT)	al fast transient (EFT) IEC 61000-4-4:2012 B		N/A	N/A		
Surge (Input a.c. power port)	IEC 61000-4-5:2014+	В	N/A	N/A		
Surge(Telecommunication port)	A1:2017	В	N/A	N/A		
Radio-frequency, Continuous conducted disturbance		А	N/A	N/A		
Broadband impulsive conducted disturbances	IEC 61000-4-6:2013	A	N/A	N/A		
Power frequency magnetic field	IEC 61000-4-8:2009	А	N/A	N/A		
Voltage dips, >95% reduction		В	N/A	N/A		
Voltage dips, 30% reduction	IEC 61000-4-11:2020	С	N/A	N/A		
Voltage interruptions, >95% reduction		С	N/A	N/A		
Note: 1. P is an abbreviation for Pass.						
2. F is an abbreviation for	Fail.					
3. N/A is an abbreviation						
	onclusion of this test report:	decision by a	ctual test data withou	t		
considering measurement uncertainty.						

2.2. Test Mode Description

For Tests					
Mode No.	Test Mode	Test Voltage			
Mode 1	Scanning	DC 5V From PC			
Mode 2	Standby	DC 5V From PC			
Note: Mode 1	Note: Mode 1 is worst case mode tests, so this report only reflected the worst mode in this part.				

2.3. Test Facility

Shenzhen Alpha Product Testing Co., Ltd. Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

2.4. Measurement Uncertainty

Test Item	Uncertainty	U _{cispr}		
Uncertainty for Conduction emission test	1.63dB	3.8 dB		
Uncertainty for Radiation Emission test	3.74 dB (Distance: 3m Polarize: V)	E O dD		
(<1G)	3.76 dB (Distance: 3m Polarize: H)	5.2 dB		
Uncortainty for Padiation Emission toot (>1C)	3.77 dB (Distance: 3m Polarize: V)			
Uncertainty for Radiation Emission test (>1G)	3.80 dB (Distance: 3m Polarize: H)			
(95% confidence levels, k=2)				

2.5. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal.Inte rval
1.	Test Receiver	Rohde&Schwarz	ESCI	101165	4.42 SP1	2022.08.22	1 Year
2.	L.I.S.N.#1	Schwarz beck	NSLK8126	8126-466	/	2022.08.22	1 Year
3.	L.I.S.N.#2	Rohde&Schwarz	ENV216	101043	/	2022.08.22	1 Year
4.	Pulse Limiter	Schwarz beck	9516F	9618	/	2022.08.22	1 Year
5.	ISN	SCHWARZBECK	CAT5 8158	00316	/	2022.03.30	1 Year
6.	ISN	SCHWARZBECK	NTFM 8158	00273	/	2022.03.31	1 Year
7.	ISN	SCHWARZBECK	CAT3 8158	CAT3 8158 #167	/	2022.03.31	1 Year

For Power Line Conducted Emission Test Equipment:

For Fi	For Frequency Range 30MHz~1GHz Radiated Emission Test Equipment:							
Item	Equipment	t Manufacturer Model No. Serial No.	Firmware Last Cal.	Cal.				
nem	Equipment	Manufacturer	Model No.	version		Last Gal.	Interval	
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K03	2.28 SP1	2022.08.22	1 Yea r	
I	Test Neceiver	-102082	-102082-Wa	2.20 0F 1	2022.00.22	riear		
3	Pilog Antonno	Sobworz book	VULB 9168	VULB	1	2021.08.30	2 Year	
3	Bilog Antenna	Bilog Antenna Schwarz beck	VULD 9100	9168#627	/	2021.00.30	Zieal	

For Fi	For Frequency Range above 1GHz Radiated Emission Test Equipment:							
Item	Item Equipment Manufacturer Model No. Serial No.		Firmware version	Last Cal.	Cal. Interval			
1	Spectrum Analyzer	Rohde&Schwarz	FSU	200002	4.71.SP5	2022.08.22	1 Year	
2	Horn Antenna	Schwarz beck	BBHA 9120 D	02106	/	2021.08.30	2 Year	
3	Amplifier	Agilent	8449B	3008A02664	/	2022.08.22	1 Year	

For H	For Harmonic Current Test & Voltage Fluctuations & Flicker Test Equipment:							
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval	
1.	Harmonics Flicker Analyser	Voltech	PM6000	20000670049 5	/	2022.08.22	1 Year	
2.	HARMINICS&FL ICKER MEASUREMEN T SYSTEM	EVERFINE	HFM300_V20 0	P630850TD14 11113	/	2022.03.30	1Year	

7

For Electrostatic Discharge Test Equipment:							
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval
1.	ESD Tester	HAEFELY	PESD1610	H310546	/	2022.08.22	1 Year.

For R	For RF Field Strength Susceptibility Test Equipment:							
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval	
1.	vector Signal Generator	Agilent	E4438C	US44271917	/	2022.08.22	1 Year	
2.	Power meter	Agilent	E4419B	GB40202122	/	2022.08.22	1 Year	
3.	Power Sensor	Agilent	E9300A	MY41496625s	/	2022.08.22	1 Year	
4.	RF power Amplifier	OPHIR	5225R	1045	/	2022.08.22	1 Year	
5.	RF power Amplifier	OPHIR	5273R	1018	/	2022.08.22	1 Year	
6	RF power Amplifier	Micotop	MPA-3000-60 00-100	MPA1811348	/	2022.08.22	1 Year	
7.	Antenna	SCHWARZBECK	STLP9128E-s pecial	STLP9128E s#139	/	N/A	NCR	
8.	Antenna	SCHWARZBECK	STLP 9149	STLP 9149 #456	/	N/A	NCR	

	For Electrical Fast Transient/Burst Immunity, Surge, Power Frequency Magnetic Field Immunity, Voltage dips and interruptions test Equipment:							
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval	
1.	Multifunctional Compact Immunity Test system	3ctest	CCS 600	ES0801655	CCS V4.0.9	2022.08.22	1 Year	
2.	Surge & EFT Coupling Decoupling Network	3ctest	SEPN 3832T	ES0951601	/	2022.08.22	1 Year	
3.	Voltage variation and PF magnetic field regulating device	3ctest	VMT2216S	ES0441601	/	2022.08.22	1 Year	
4.	Capacitive Coupling Clamp	3ctest	CCC 100	EC0441660	/	2022.08.22	1 Year	

Page 13 of 60

			Page 13 of	f 60	Report No.:	A2303105-C	02-R01	
For In	For Injected currents susceptibility test Equipment:							
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Last Cal.	Cal. Interval	
1.	Conducted Immunity test System	SKET	—	SK201910100 1_CITS	/	2022.08.22	1 Year	
2.	Fixed Coaxial Attenuator (6dB Attenuation)	CD	ATT-0675	120540086	/	2022.08.22	1 Year	
3.	coupling-decoupli ng network (CDN)	CD	CDN M2/M3	2302	/	2022.08.22	1 Year	
4.	Electromagnetic Injection Clamp (EMC-Clamp)	CD	EM-Clamp	0513A031201	/	2022.08.22	1 Year	

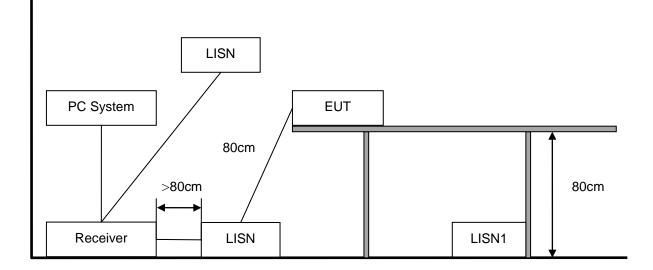
ForTest Software Information					
Item	Software Name	Manufacturer	Version		
RE	EZ-EMC	Farad	Alpha-3A1		
CE	EZ-EMC	Farad	Alpha-3A1		

3. Conducted Emissions Test

3.1. Test Limit

Limit for Conducted Emissions at Mains Terminals Test

	Maximum RF	Line Voltage
Frequency	Quasi-Peak Level	Average Level
	dB(µV)	dB(μV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50


Limit for Conducted Emissions From Asymmetric Mode Test

	Maximum RF	Line Voltage
Frequency	Quasi-Peak Level	Average Level
	dB(µV)	dB(µV)
150kHz ~ 500kHz	84 ~ 74	74 ~ 64
500kHz ~ 30MHz	74	64

Notes: 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss

- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.2. Block Diagram of Test Setup

3.3. Configuration of EUT on Test

The following equipment are installed on conducted disturbance at mains terminals to meet the EN 55032 requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

3.5. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to EN 55032 on Conducted Disturbance at Mains Terminals test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.
- (3) The test results are reported on Section 3.6 & Section 3.7.

3.6. Conducted Emissions at Mains Terminals Test Results

EUT	:	OEM BARCODE SCANNER	Test Date : N/A	
M/N	:	RT830D	Temperature : N/A	
Test Engineer	:	N/A	Humidity : N/A	
Test Voltage	:	N/A	Pressure : N/A	
Test Mode	:	N/A		
Test Results	:	N/A		
Note	:	1. Not applicable for equipment operated with	PC, battery, or Power Supply.	

4. Radiated Emissions Test

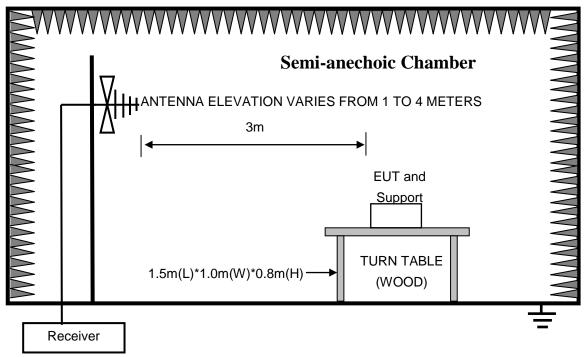
4.1. Test Limit

Fr	Frequency Distance MHz (Meters)			Field Strengths Limits dB(μV)/m		
30	~	230	3	40		
230	~	1000	3	47		
1000	~	3000	3	70(Peak) 50(Average)		
3000	~	6000	3	74(Peak) 54(Average)		

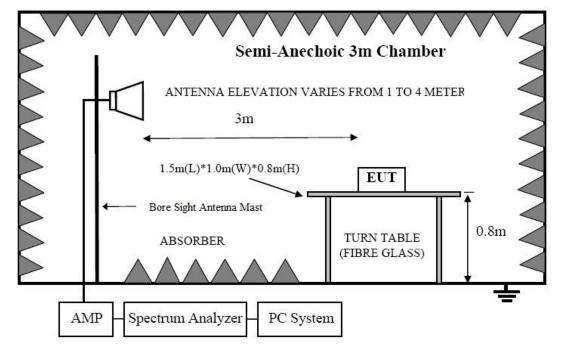
Notes:

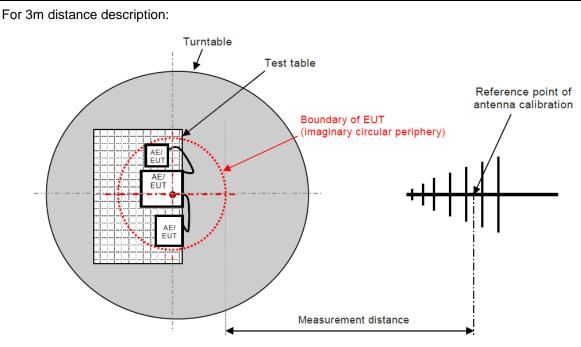
1. Emission level = Read level + Antenna Factor - Preamp Factor + Cable Loss

2. The smaller limit shall apply at the cross point between two frequency bands.


3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4. Frequency range of radiated measurements:


Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)			
Below 108	1000			
108-500	2000			
500-1000	5000			
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower.			


4.2. Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the EN 55032 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.5. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all the interface cables were changed according to EN 55032 on Radiated Disturbance test.
- (2) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (3) The resolution bandwidth of the R&S Spectrum Analyzer FSU was set at 1MHz. (For above 1GHz)
- (4) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, all measurement distance is 3m in 3m semi anechoic chamber.

- (5) The frequency range from 1GHz to 6GHz was checked with peak and average detector, measurement distance is 3m in 3m chamber.
- (6) The test results are reported on Section 4.6.

4.6. Radiated Emissions Test Results

For below 1G rad	iated disturbance test result:				
EUT	: OEM BARCODE SCANNER	Test Date : 2023.05.05			
M/N	: RT830D	Temperature : 24°C			
Test Engineer	: Jerry Yin	Humidity : 56%			
Test Voltage	Voltage : DC 5V From PC Pressure : 101.6kPa				
Test Mode : Scanning					
Test Results : PASS					
Note: 1. The test	st results are listed in next pages.				
	2. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet limits and the measurement with the				

quasi-peak detector need not be carried out.

Note:1. *:Maximum data; x:Over limit; !:over margin.

26.19

15.86

42.05

47.00


-4.95

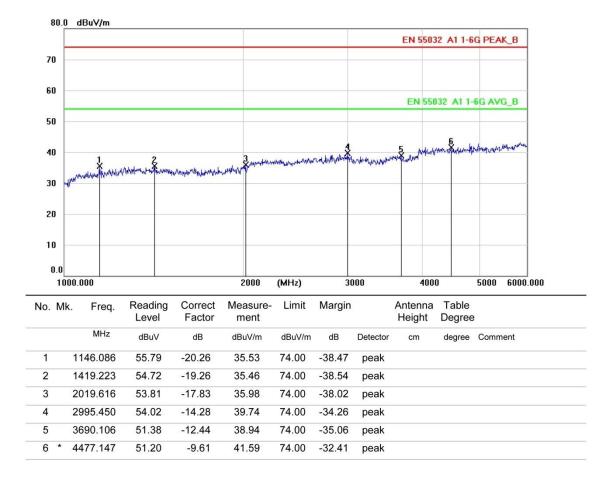
QP

6

377.7443

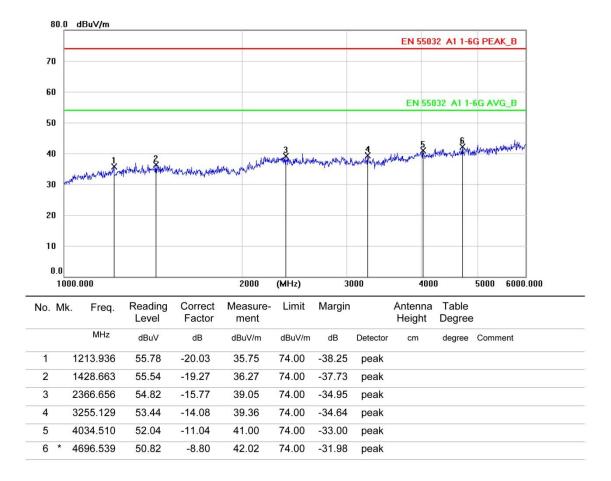
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna Polarity: Horizontal


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		56.9778	21.92	13.41	35.33	40.00	-4.67	QP			
2	*	122.6903	23.80	13.19	36.99	40.00	-3.01	QP			
3		166.5149	22.47	14.41	36.88	40.00	-3.12	QP			
4		222.6637	24.76	11.89	36.65	40.00	-3.35	QP			
5		385.2354	26.30	16.00	42.30	47.00	-4.70	QP			
6		407.7049	24.42	16.43	40.85	47.00	-6.15	QP			

Note:1. *:Maximum data; x:Over limit; !:over margin. 2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

For above 1G radiated emissions test result:	
--	--


EUT	: OEM BARCODE SCANNER	Test Date : 2023.05.05				
M/N	: RT830D	Temperature : 24°C				
Test Er	igineer : Jerry Yin	Humidity : 56%				
Test Vo	Itage : DC 5V From PC	Pressure : 101.6kPa				
Test M	Test Mode : Scanning					
Test R	est Results : PASS					
Note:	1. The test results are listed in next pages.					
	2. If the limits for the measurement with the average detector are met when using a receiver with a					
	peak detector, the test unit shall be deemed to meet limits and the measurement with the average					
	detector need not be carried out.					

Antenna Polarity: Vertical

Note:1. *:Maximum data; x:Over limit; !:over margin.

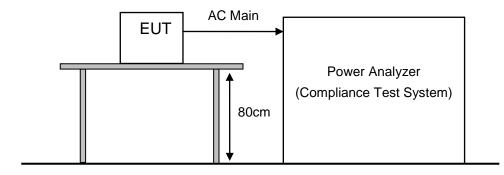
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

5. Harmonic Current Test

5.1. Test Limit


For Class A equipment:

Harmonic order	Maximum permissible harmonic current
n	A
Odd h	armonics
3	2,30
5	1,14
7	0,77
9	0,40
11	0,33
13	0,21
$15 \le n \le 39$	0,15 <u>15</u> n
Even	harmonics
2	1,08
4	0,43
6	0,30
$8 \le n \le 40$	$0,23\frac{8}{n}$

for Class A equipment:

The harmonics of the input current shall not exceed the values given in Class A equipment limit multiplied by a factor of 1,5.

5.2. Block Diagram of Test Setup

5.3. Configuration of EUT on Test

The following equipment are installed on Harmonic Current Test to meet the EN IEC 61000-3-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

5.5. Test Procedure

- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.
- (2) The test results are reported on Section 5.6.

5.6. Harmonic Current Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	N/A
M/N	:	RT830D	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	1. Not applicable for equipment operated with PC, battery, or Power Supply.			

6. Voltage Fluctuations & Flicker Test

6.1. Block Diagram Of Test Setup

6.2. Test Standard

EN 61000-3-3:2013+A1:2019

6.3. Voltage Fluctuation And Flicker Test Limits

Test Item	Limit	Note
P _{st}	1.0	P _{st} means Short-term flicker indicator
P _{lt}	0.65	P _{lt} means long-term flicker indicator
T _{dt}	0.2	T _{dt} means maximum time that dt exceeds 3%
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
d _c (%)	3.3%	d _c means relative steady-state voltage change.

6.4. Configuration Of EUT On Test

The following equipment are installed on Harmonic Current Test to meet the EN 61000-3-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

6.5. Operating Condition Of EUT

- (1) Setup the EUT as shown as Section 8.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

6.6. Test Procedure

- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions During the flick measurement; the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.
- (2) The test results are reported on Section 8.7.

6.7. Voltage Fluctuation And Flicker Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	N/A
M/N	:	RT830D	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	1. Not applicable for equipment operated with PC, battery, or Power Supply.			

7. Immunity General performance criteria

Performance Level

When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

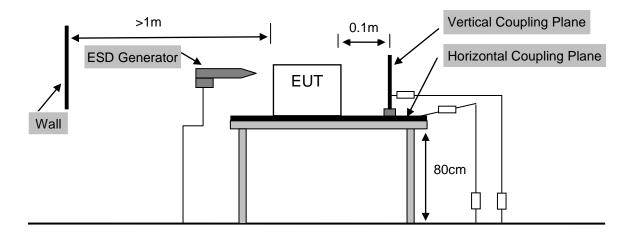
After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.


8. Electrostatic Discharge Test

8.1. Electrostatic Discharge Test Limits

Test Type	Test Level	Performance Criterion		
Air Discharge	8KV	В		
Contact Discharge	4KV	В		

Notes: 1. Test set-up reference IEC 61000-4-2:2008

8.2. Block Diagram of Test Setup

8.3. Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 8.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

8.5. Test Procedure

(1) Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times (10 with positive and 10 negative with positive) for each pre-selected test point. This procedure was repeated until all the air discharge completed.

(2) Contact Discharge:

All the procedure was same as Section 8.5(1). Except that for the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.

(3) Indirect discharge for horizontal coupling plane:

At least 20 single discharges (10 with positive and 10 negative with positive) were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

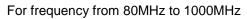
(4) Indirect discharge for vertical coupling plane:

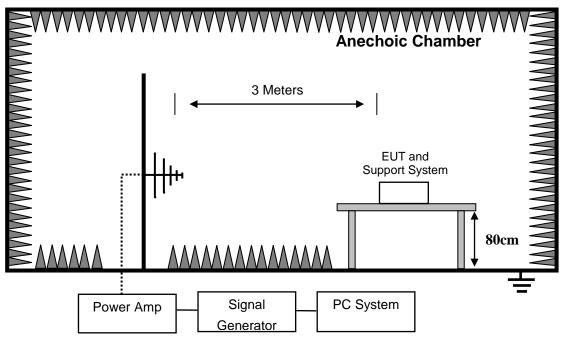
At least 20 single discharge (10 with positive and 10 negative with positive) were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.6. Electrostatic Discharge Test Results

EUT		:	OEM BARCODE SCANNER			Tes	Test Date : 2023.05.05			
M/N		:	RT830D			Ten	Temperature : 24°C			
Test En	igineer	:	Jerry Yin			Humidity : 56 %				
Test Vo	oltage		DC 5V From PC			Pressure : 101.6kPa				
Test Mo	ode	:	Scanning							
Test Re	esults	:	PASS							
Discharge Voltage (kV)			Type Of Discharge	Dischargeable Po		ointo	Performance			
						oms	Required	Observation		
±2			Contact	/		В	/			
±4			Contact	/		В	/			
±2			Air	1		В	А			
±4			Air	1		В	А			
±8			Air	1		В	А			
±4			HCP-Bottom	Edge of the HCP		В	А			
±4			VCP-Front	Center of the VCP		В	А			
±4			VCP-Left	Center of the VCP		В	А			
±4			VCP-Back	Center of the VCP		В	А			
±4			VCP-Right	Center of the VCP		В	А			
			Discha	irge Poii	nts Descript	ion				
1	Gap				5.	/				
2	/	/			6.	/				
3	/	/			7.	/				
4.	1				8.	/				
Note:	1. For t	he	time interval between suc	cessive	single disc	narges	an initial value of	one second.		
	2. For A	۸ir	Discharge each Point Pos	sitive 10	times and r	negativ	e 10 times dischar	ge.		
	3. EUT does not contain metal contact points, not need to contact discharge measurement							-		
			is no function loss		,	_	0			

4. Class A is no function loss.


9. RF Field Strength Susceptibility Test


9.1. Test Level

Test Specifications	Test Level	Performance Criterion
80MHz-1000MHz		А
1800(±1%)MHz		A
2600(±1%)MHz	3V/m (r.m.s.)	А
3500(±1%)MHz		A
5000(±1%)MHz		А

Notes: 1. Test set-up reference IEC 61000-4-3:2006 + A1:2007 + A2:2010

9.2. Block Diagram of Test Setup

For frequency above 1000MHz

9.3. Configuration of EUT on Test

The following equipment are installed on RF Field Strength Susceptibility Test to meet the IEC 61000-4-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 9.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

9.5. Test Procedure

- Testing was performed in a Fully anechoic chamber as recommended by IEC 61000-4-3.
 The EUT was placed on an 80 cm high non-conductive table located in the area of field uniformity.
- The radiating antenna was placed 3m in front of the EUT and Support system, and dwell time of the radiated interference was controlled by an automated, computer-controlled system.
 The signal source was stepped through the applicable frequency range at a rate no faster
- (3) than 1% of the fundamental. The signal was amplitude modulated 80% over the frequency range
 80 MHz to 1GHz at a level of 3 V/m. The dwell time was set at 1 s. Field presence was monitored during testing via a field probe placed in close proximity to the EUT.
- (4) Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization.

9.6. RF Field Strength Susceptibility Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	2023.05.05
M/N	:	RT830D	Temperature	:	24 ℃
Test Engineer	:	Jerry Yin	Humidity	:	56%
Test Voltage		DC 5V From PC	Pressure	:	101.6kPa
Test Mode	:	Scanning			
Test Results	:	PASS			
Note	:	The test results are listed in next pages			

		Page 4	0 of 60	Report No.:	A2303105-C02-R01	
Modulation:		⊠ AM ⊂] Pulse	□ none 1 kHz	z 80%	
Frequency Range		80 MHz -1000MHz				
Field strength			3V/m			
Steps			1%			
	Hor	izontal	al Vertical		Result	
	Required	Observation	Required	Observation	(Pass / Fail)	
Front	А	А	А	A	Pass	
Right	А	А	А	A	Pass	
Rear	А	А	А	A	Pass	
Left	А	А	А	A	Pass	
Remark: Class A is no	Remark: Class A is no function loss					

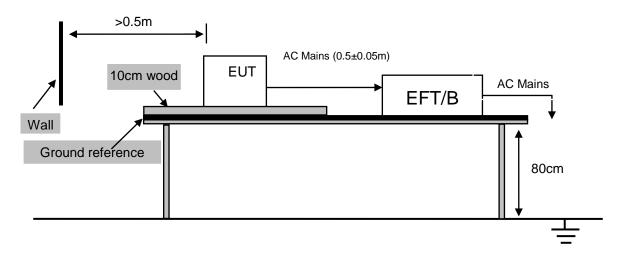
Modulat	ion:	MAM C] Pulse	□ none 1 k	Hz 80%	
Frequency Range		1800(±1%) MHz				
Field strength		3V/m				
Steps		spot test				
	Hori	izontal	Vertical		Result	
	Required	Observation	Required	Observation	(Pass / Fail)	
Front	А	А	А	А	Pass	
Right	А	А	А	А	Pass	
Rear	А	А	А	А	Pass	
Left A		A	А	А	Pass	
Remark: Class A is no	function loss					

Modulation:		⊠ AM [∃ Pulse	□ none 1 kH	z 80%	
Frequency Range	2600(±1%) MHz					
Field strength		3V/m				
Steps		spot test				
	Hori	izontal	Vertical		Result	
-	Required	Observation	Required	Observation	(Pass / Fail)	
Front	А	А	A	A	Pass	
Right	А	А	A	A	Pass	
Rear	А	А	A	A	Pass	
Left	А	A	A	A	Pass	
Remark: Class A is no f	unction loss	•				

		Page 4	1 of 60	Report No.:	A2303105-C02-R01	
Modulation:		⊠ AM ⊂] Pulse	□ none 1 kHz	z 80%	
Frequency Range			3500(±1%)) MHz		
Field strength			3V/m)		
Steps		spot test				
	Hor	Horizontal Vertical		Result		
	Required	Observation	Required	Observation	(Pass / Fail)	
Front	А	A	А	A	Pass	
Right	А	A	А	A	Pass	
Rear	A	A	A	A	Pass	
Left	А	А	А	A	Pass	
Remark: Class A is no	Remark: Class A is no function loss					

Modulatio	on:	MAM D] Pulse	□ none 1 kH	lz 80%	
Frequency Range	5000(±1%) MHz					
Field strength		3V/m				
Steps		spot test				
	Horizontal		Vertical		Result	
	Required	Observation	Required	Observation	(Pass / Fail)	
Front	А	А	A	A	Pass	
Right	А	А	A	A	Pass	
Rear	А	А	А	A	Pass	
Left	А	А	A	A	Pass	
Remark: Class A is no fu	unction loss	I	1	1		

10. Electrical Fast Transient/Burst Immunity Test


10.1.Test Level

For AC mains power ports					
Test Specifications	Test Level	Performance Criterion			
Tr/Th Repetition: 5/50ns Frequency: 5kHz	1KV	В			
For DC netv	vork power ports and analog	ue/digital data ports			
Test Specifications	Test Specifications Test Level Performance Criterion				
Tr/Th Repetition: 5/50ns Frequency: 5kHz	0.5KV	В			

Notes:

1. Test set-up reference IEC 61000-4-4:2012

10.2.Block Diagram of Test Setup

10.3.Configuration of EUT on Test

The following equipment are installed on Electrical Fast Transient/Burst immunity Test to meet the IEC 61000-4-4 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 10.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

10.5.Test Procedure

The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support 0.1m + 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project beyond the EUT by at least

- (1) 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.
- 8.6.1. For input and AC power ports:

The EUT was connected to the power mains by using a coupling device that couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 1min.

8.6.2. For signal lines and control lines ports:

It's unnecessary to test.

8.6.3. For DC input and DC output power ports:

It's unnecessary to test.

10.6.Electrical Fast Transient/Burst Immunity Test Results

EUT	:	OEM BARCODE SCANNER	Test Date	:	N/A
M/N	:	RT830D	Temperature	:	N/A
Test Engineer	:	N/A	Humidity	:	N/A
Test Voltage	:	N/A	Pressure	:	N/A
Test Mode	:	N/A			
Test Results	:	N/A			
Note	:	Not applicable for equipment operated with PC, battery, or Power Supply.			

11. Surge Test

11.1.Test Level

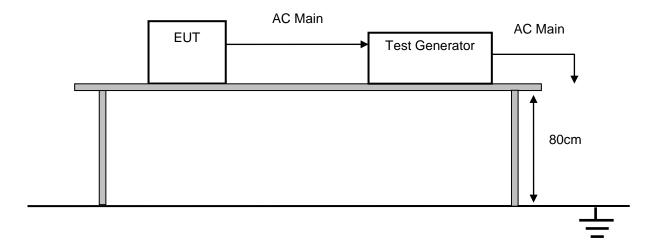
For AC mains power ports

Test Specifications	Test Level	Performance Criterion
Tr/Th Repetition: 1,2/50 (8/20)ns Between line and line	1 KV	В
Tr/Th Repetition: 1,2/50 (8/20)ns Between line and earth (ground)	2 KV	В
For [DC network power ports	
Test Specifications	Test Level	Performance Criterion
Tr/Th Repetition: 1,2/50 (8/20)ns Line to reference ground for each individual line	0.5 KV	В
For ar	nalogue/digital data ports	
Test Specifications	Test Level	Performance Criterion
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is intended	1 KV/4KV ^{a b}	С
Tr/Th Repetition: 10/700 (5/320)ns unshielded symmetrical: lines to ground Apply where primary protection is not intended	1 KV ^b	С
Tr/Th Repetition: 1,2/50 (8/20)ns coaxial or shielded: shield to ground	0.5KV °	В

Notes: 1. Test set-up reference IEC 61000-4-5:2014+A1:2017

2. ^a is surges are applied with primary protection fitted. Where possible, use the actual primary protector intended to be used in the installation.

3. ^b is Where the surge coupling network for the 10/700 (5/320) μ s waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20) μ s waveform and appropriate coupling network.


4. ^a is Surges are applicable to ports which satisfy all the following conditions:

• may connect directly to cables that leave the building structure,

• defined as an antenna port, a wired network port, or a broadcast receiver tuner port see the standard EN 55035 section 3.

Typical ports covered include xDSL, PSTN, CATV, antenna and similar. Excluded ports are LAN and similar.

11.2.Block Diagram of Test Setup

11.3.Configuration of EUT on Test

The following equipment are installed on Surge Test to meet the IEC 61000-4-5 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

11.4.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 11.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

11.5.Test Procedure

For line-to-line coupling mode, provide a 1kV 1.2/50us voltage surge (at open-circuit condition) and

- 8/20us current surge to EUT selected points, and for active line / neutral lines to ground are same except test level is 2kV.
- (2) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are applied during test.
- (3) Different phase angles are done individually.
- (4) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.6.Surge Test Results

EUT	: OEM BARCODE SCANNER	Test Date : N/A			
M/N	: RT830D	Temperature : N/A			
Test Engineer	: N/A	Humidity : N/A			
Test Voltage	: N/A	Pressure : N/A			
Test Mode	: N/A				
Test Results	: N/A				
Note	: Not applicable for equipment operated with PC, battery, or Power Supply.				

12. Injected Currents Susceptibility Test

12.1.Test Level

Test Specifications	Test Level	Performance Criterion
0,15 to 10MHz	3 V	
10 to 30MHz	3 to 1 V	А
30 to 80MHz	1 V	

Notes: 1. Test set-up reference IEC 61000-4-6:2013

12.2.Block Diagram of Test Setup

12.3.Configuration of EUT on Test

The following equipment are installed on Injected currents susceptibility Test to meet the IEC 61000-4-6 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

12.4.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 12.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

12.5.Test Procedure

(1) Let the EUT work in test mode and test it.

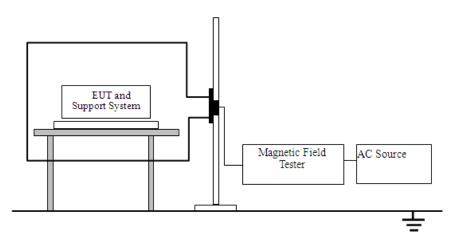
The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables

- (2) between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 10 and 30 mm (where possible).
- (3) The disturbance signal described below is injected to EUT through CDN.
- (4) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- (5) The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the
- disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- (6) The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- (7) Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.6.Injected Currents Susceptibility Test Results

EUT	: OEM BARCODE SCANNER	Test Date : N/A
M/N	: RT830D	Temperature : N/A
Test Engineer	: N/A	Humidity : N/A
Test Voltage	: N/A	Pressure : N/A
Test Mode	: N/A	
Test Results	: N/A	
Note	: Not applicable for equipment operated with PC, battery, or Power Supply.	

13. Magnetic Field Immunity Test


13.1.Test Level

Test Specifications	Test Level	Performance Criterion	
50 or 60 Hz	1 A/m	A	

Notes: 1. Test set-up reference IEC 61000-4-8:2009

2. This test applicable only to equipment containing devices intrinsically susceptible to magnetic fields, such as CRT monitors, Hall effect elements, electro-dynamic microphones, magnetic field sensors or audio frequency transformers. Refer to D.3.2 for determining the test level when the EUT contains a CRT display.

13.2.Block Diagram of Test Setup

13.3.Configuration of EUT on Test

The following equipment are installed on Magnetic field immunity Test to meet the IEC 61000-4-8 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

13.4.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 13.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

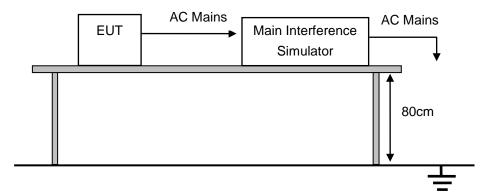
13.5.Test Procedure

The EUT was subjected to the test magnetic field by using the induction coil of standard dimensions

 (1) (1m*1m) and shown in Section 13.2. The induction coil was then rotated by 90° in order to expose the EUT to the test field with different orientations.

13.6.Magnetic Field Immunity Test Results

EUT	:	OEM BARCODE SCANNER	Test Date : N/A
M/N	:	RT830D	Temperature : N/A
Test Engineer	:	N/A	Humidity : N/A
Test Voltage	:	N/A	Pressure : N/A
Test Mode	:	N/A	
Test Results	:	N/A	
		The EUT not containing devices susceptible to magnetic fields, and Power-frequency	
Note	:	magnetic field test applicable only to EUT containing devices susceptible to magnetic	
		fields, so the test not applicable.	


14. Voltage Dips And Interruptions Test

14.1.Test Level

Test Level %UT	Voltage dip and short interruptions %UT	Performance Criterion	Duration (in period)
< 5	100	С	250
< 5	100	В	0.5
70	30	С	25

Notes: 1. Test set-up reference IEC 61000-4-11:2020

14.2.Block Diagram of Test Setup

14.3.Configuration of EUT on Test

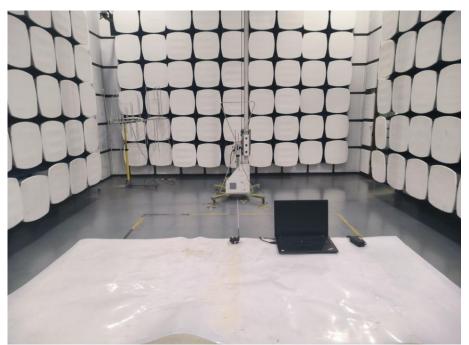
The following equipment are installed on Voltage dips and interruptions Test to meet the IEC 61000-4-11 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

14.4.Operating Condition of EUT

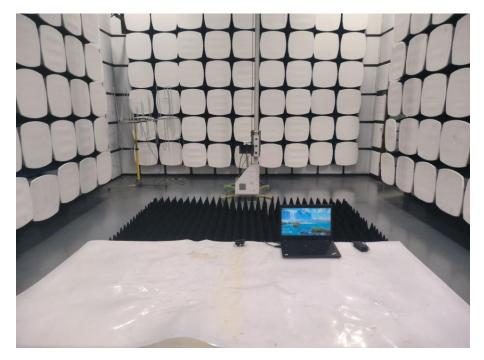
- (1) Setup the EUT as shown as Section 14.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

14.5.Test Procedure

- (1) The interruption is introduced at selected phase angles with specified duration.
- (2) Record any degradation of performance.

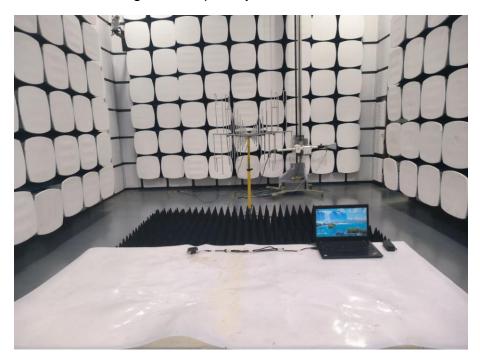

14.6.Voltage Dips And Interruptions Test Results

EUT	:	OEM BARCODE SCANNER	Test Date : N/A
M/N	:	RT830D	Temperature : N/A
Test Engineer	:	N/A	Humidity : N/A
Test Voltage	:	N/A	Pressure : N/A
Test Mode	:	N/A	
Test Results	:	N/A	
Note	:	Not applicable for equipment operated with PC, battery, or Power Supply.	

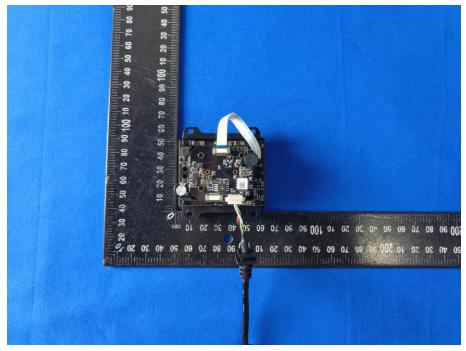

15. Photograph

15.1.Photo Of Radiated Emissions Test (In Semi Anechoic Chamber)

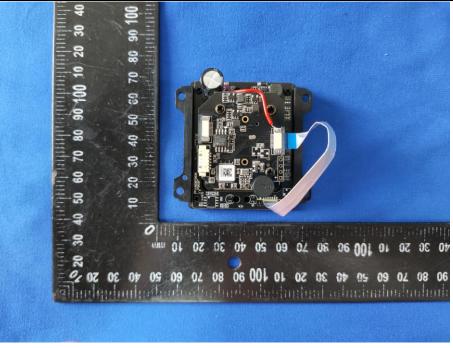
30MHz~1GHz


Above 1GHz

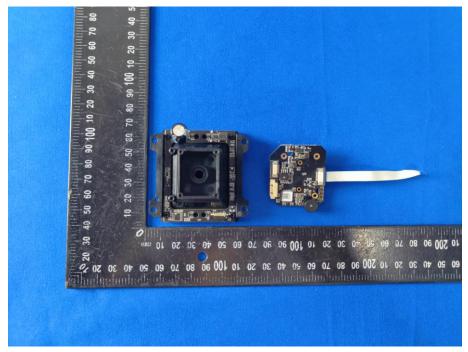
15.2.Photo of Electrostatic Discharge Test


15.3.Photo of RF Field Strength Susceptibility Test

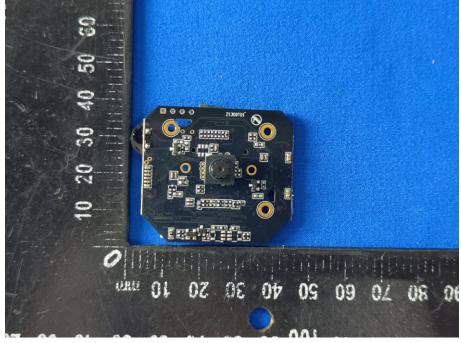
16. Photos Of The EUT

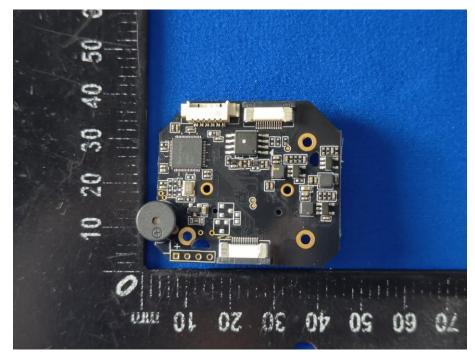


EUT View

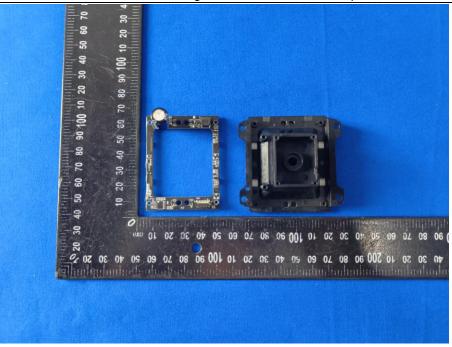


EUT View

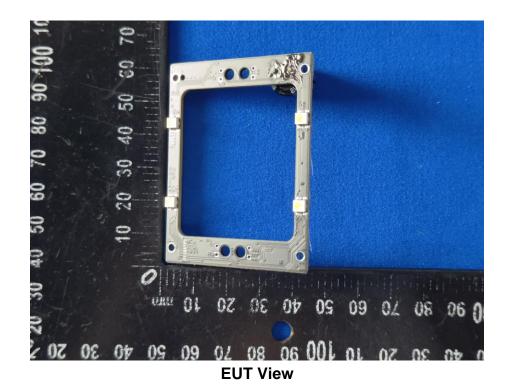

Page 58 of 60


EUT View

EUT View



EUT View



EUT View

Page 60 of 60

EUT View

----END OF REPORT----